
Wavelet Toolbox™

User’s Guide

R2011b

Michel Misiti
Yves Misiti
Georges Oppenheim
Jean-Michel Poggi

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Wavelet Toolbox™ User’s Guide

© COPYRIGHT 1997–2011 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
March 1997 First printing New for Version 1.0
September 2000 Second printing Revised for Version 2.0 (Release 12)
June 2001 Online only Revised for Version 2.1 (Release 12.1)
July 2002 Online only Revised for Version 2.2 (Release 13)
June 2004 Online only Revised for Version 3.0 (Release 14)
July 2004 Third printing Revised for Version 3.0
October 2004 Online only Revised for Version 3.0.1 (Release 14SP1)
March 2005 Online only Revised for Version 3.0.2 (Release 14SP2)
June 2005 Fourth printing Minor revision for Version 3.0.2
September 2005 Online only Minor revision for Version 3.0.3 (Release R14SP3)
March 2006 Online only Minor revision for Version 3.0.4 (Release 2006a)
September 2006 Online only Revised for Version 3.1 (Release 2006b)
March 2007 Online only Revised for Version 4.0 (Release 2007a)
September 2007 Online only Revised for Version 4.1 (Release 2007b)
October 2007 Fifth printing Revised for Version 4.1
March 2008 Online only Revised for Version 4.2 (Release 2008a)
October 2008 Online only Revised for Version 4.3 (Release 2008b)
March 2009 Online only Revised for Version 4.4 (Release 2009a)
September 2009 Online only Minor revision for Version 4.4.1 (Release 2009b)
March 2010 Online only Revised for Version 4.5 (Release 2010a)
September 2010 Online only Revised for Version 4.6 (Release 2010b)
April 2011 Online only Revised for Version 4.7 (Release 2011a)
September 2011 Online only Revised for Version 4.8 (Release 2011b)

Contents

Acknowledgments

Wavelet Applications

1
Introduction to Wavelet Analysis . 1-2

Detecting Discontinuities and Breakdown Points I . . . 1-3
Discussion . 1-4

Detecting Discontinuities and Breakdown Points II . . 1-6
Discussion . 1-7

Detecting Long-Term Evolution . 1-8
Discussion . 1-9

Detecting Self-Similarity . 1-10
Wavelet Coefficients and Self-Similarity 1-10
Discussion . 1-11

Identifying Pure Frequencies . 1-12
Discussion . 1-12

Suppressing Signals . 1-15
Discussion . 1-16

De-Noising Signals . 1-18
Discussion . 1-18

De-Noising Images . 1-21
Discussion . 1-22

v

Compressing Images . 1-27
Discussion . 1-27

Fast Multiplication of Large Matrices 1-29
Example 1: Effective Fast Matrix Multiplication 1-29
Example 2: Ineffective Fast Matrix Multiplication 1-30

Wavelets in Action: Examples and Case Studies

2
Illustrated Examples . 2-2
Advice to the Reader . 2-4
Example 1: A Sum of Sines . 2-6
Example 2: A Frequency Breakdown (Discontinuity) 2-10
Example 3: Uniform White Noise . 2-15
Example 4: Colored AR(3) Noise . 2-17
Example 5: Polynomial + White Noise 2-19
Example 6: A Step Signal . 2-21
Example 7: Two Proximal Discontinuities 2-23
Example 8: A Second-Derivative Discontinuity 2-25
Example 9: A Ramp + White Noise 2-27
Example 10: A Ramp + Colored Noise 2-29
Example 11: A Sine + White Noise 2-31
Example 12: A Triangle + A Sine . 2-33
Example 13: A Triangle + A Sine + Noise 2-35
Example 14: A Real Electricity Consumption Signal 2-37

Case Study: An Electrical Signal . 2-39
Data and the External Information 2-39
Analysis of the Midday Period . 2-41
Analysis of the End of the Night Period 2-42
Suggestions for Further Analysis . 2-45

vi Contents

Using Wavelet Packets

3
About Wavelet Packet Analysis . 3-2

One-Dimensional Wavelet Packet Analysis 3-7
Compressing a Signal Using Wavelet Packets 3-12
De-Noising a Signal Using Wavelet Packets 3-15

Two-Dimensional Wavelet Packet Analysis 3-21
Compressing an Image Using Wavelet Packets 3-25

Importing and Exporting from Graphical Tools 3-29
Saving Information to Disk . 3-29
Loading Information into the Graphical Tools 3-33

1-D Continuous Wavelet Analysis Using Discrete
Fourier Transforms (DFT)

4
DFT-Based Continuous Wavelet Analysis Using
Command Line . 4-2
CWT of Sum of Disjoint Sinusoids . 4-2
Approximate Scale-Frequency Conversions 4-6
Signal Reconstruction from CWT Coefficients 4-9
Signal Approximation with Modified CWT Coefficients . . . 4-10

DFT-Based Continuous Wavelet Analysis Using
Graphical User Interface . 4-13
Manual Selection of CWT Coefficients 4-19

vii

Generating MATLAB Code from Wavelet
Toolbox GUI

5
Generating MATLAB Code for 1-D Decimated Wavelet
Denoising and Compression . 5-2
Wavelet 1-D Denoising . 5-2

Generating MATLAB Code for 2-D Decimated Wavelet
Denoising and Compression . 5-13
2-D Decimated Discrete Wavelet Transform Denoising . . . 5-13
2-D Decimated Discrete Wavelet Transform
Compression . 5-17

Generating MATLAB Code for 1-D Stationary Wavelet
Denoising . 5-20
1-D Stationary Wavelet Transform Denoising 5-20

Generating MATLAB Code for 2-D Stationary Wavelet
Denoising . 5-27
2-D Stationary Wavelet Transform Denoising 5-27

Generating MATLAB Code for 1-D Wavelet Packet
Denoising and Compression . 5-31
1-D Wavelet Packet Denoising . 5-31

Generating MATLAB Code for 2-D Wavelet Packet
Denoising and Compression . 5-35
2-D Wavelet Packet Compression . 5-35

Advanced Concepts

6
Mathematical Conventions . 6-2

General Concepts . 6-5
Wavelets: A New Tool for Signal Analysis 6-5

viii Contents

Wavelet Decomposition: A Hierarchical Organization 6-5
Finer and Coarser Resolutions . 6-6
Wavelet Shapes . 6-6
Wavelets and Associated Families . 6-7
Wavelet Transforms: Continuous and Discrete 6-12
Local and Global Analysis . 6-14
Synthesis: An Inverse Transform . 6-15
Details and Approximations . 6-15

Fast Wavelet Transform (FWT) Algorithm 6-19
Filters Used to Calculate the DWT and IDWT 6-19
Algorithms . 6-23
Why Does Such an Algorithm Exist? 6-28
One-Dimensional Wavelet Capabilities 6-32
Two-Dimensional Wavelet Capabilities 6-33

Dealing with Border Distortion . 6-35
Signal Extensions: Zero-Padding, Symmetrization, and
Smooth Padding . 6-35

Discrete Stationary Wavelet Transform (SWT) 6-45
ε -Decimated DWT . 6-45
How to Calculate the ε -Decimated DWT: SWT 6-46
Inverse Discrete Stationary Wavelet Transform (ISWT) . . 6-50
More About SWT . 6-51

Lifting Method for Constructing Wavelets 6-52
Lifting Background . 6-52
Lifting Functions . 6-55

Frequently Asked Questions . 6-62
Continuous or Discrete Analysis? . 6-62
Why Are Wavelets Useful for Space-Saving Coding? 6-62

Wavelet Families: Additional Discussion 6-73
Daubechies Wavelets: dbN . 6-74
Symlet Wavelets: symN . 6-76
Coiflet Wavelets: coifN . 6-77
Biorthogonal Wavelet Pairs: biorNr.Nd 6-78
Meyer Wavelet: meyr . 6-80
Battle-Lemarie Wavelets . 6-82

ix

Mexican Hat Wavelet: mexh . 6-83
Morlet Wavelet: morl . 6-83
Additional Real Wavelets . 6-84
Complex Wavelets . 6-87
Summary of Wavelet Families and Associated Properties
(Part 1) . 6-91

Summary of Wavelet Families and Associated Properties
(Part 2) . 6-93

Wavelet Applications: More Detail 6-97
Suppressing Signals . 6-97
Splitting Signal Components . 6-100
Noise Processing . 6-100
De-Noising . 6-101
Data Compression . 6-115
Function Estimation: Density and Regression 6-119
Available Methods for De-Noising, Estimation, and
Compression Using GUI Tools . 6-128

True Compression for Images . 6-136

Wavelet Packets . 6-143
From Wavelets to Wavelet Packets: Decomposing the
Details . 6-143

Wavelet Packets in Action: An Introduction 6-144
Building Wavelet Packets . 6-151
Wavelet Packet Atoms . 6-154
Organizing the Wavelet Packets . 6-156
Choosing the Optimal Decomposition 6-158
Some Interesting Subtrees . 6-163
Wavelet Packets 2-D Decomposition Structure 6-167
Wavelet Packets for Compression and De-Noising 6-167

References . 6-168

Adding Your Own Wavelets

7
Preparing to Add a New Wavelet Family 7-2
Choose the Wavelet Family Full Name 7-2

x Contents

Choose the Wavelet Family Short Name 7-3
Determine the Wavelet Type . 7-3
Define the Orders of Wavelets Within the Given Family . . 7-4
Build a MAT-File or Code File . 7-4
Define the Effective Support . 7-7

Adding a New Wavelet Family . 7-8
Example 1 . 7-8
Example 2 . 7-12

After Adding a New Wavelet Family 7-16

GUI Reference

A
General Features . A-2
Color Coding . A-2
Connection of Plots . A-3
Using the Mouse . A-3
Controlling the Colormap . A-6
Using Menus . A-9
Using the View Axes Button . A-13
Using the Interval-Dependent Threshold Settings Tool . . . A-15

Continuous Wavelet Tool Features A-17

Wavelet 1-D Tool Features . A-18
Tree Mode . A-18
More Display Options . A-18

Wavelet 2-D Tool Features . A-20

Wavelet Packet Tool Features (1-D and 2-D) A-21
Node Action Functionality . A-22

Wavelet Display Tool . A-26

xi

Wavelet Packet Display Tool . A-27

Object-Oriented Programming

B
Introduction to Object-Oriented Features B-2

Short Description of Objects in the Wavelet Toolbox
Software . B-3

Simple Use of Objects Through Four Examples B-5
Example 1: plot and wpviewcf . B-5
Example 2: drawtree and readtree B-8
Example 3: A Funny One . B-10
Example 4: Thresholding Wavelet Packets B-12

Detailed Description of Objects in the Wavelet Toolbox
Software . B-16
WTBO Object . B-16
NTREE Object . B-17
DTREE Object . B-18
WPTREE Object . B-20

Advanced Use of Objects . B-23
Example 1: Building a Wavelet Tree Object (WTREE) . . . B-23
Example 2: Building a Right Wavelet Tree Object
(RWVTREE) . B-24

Example 3: Building a Wavelet Tree Object (WVTREE) . . B-26
Example 4: Building a Wavelet Tree Object
(EDWTTREE) . B-27

Index

xii Contents

_

Acknowledgments

The authors wish to express their gratitude to all the colleagues who directly
or indirectly contributed to the making of the Wavelet Toolbox™ software.

Specifically

• For the wavelet questions to Pierre-Gilles Lemarié-Rieusset (Evry) and
Yves Meyer (ENS Cachan)

• For the statistical questions to Lucien Birgé (Paris 6), Pascal Massart
(Paris 11) and Marc Lavielle (Paris 5)

• To David Donoho (Stanford) and to Anestis Antoniadis (Grenoble), who give
generously so many valuable ideas

Colleagues and friends who have helped us steadily are Patrice Abry
(ENS Lyon), Samir Akkouche (Ecole Centrale de Lyon), Mark Asch (Paris
11), Patrice Assouad (Paris 11), Roger Astier (Paris 11), Jean Coursol
(Paris 11), Didier Dacunha-Castelle (Paris 11), Claude Deniau (Marseille),
Patrick Flandrin (Ecole Normale de Lyon), Eric Galin (Ecole Centrale
de Lyon), Christine Graffigne (Paris 5), Anatoli Juditsky (Grenoble),
Gérard Kerkyacharian (Paris 10), Gérard Malgouyres (Paris 11), Olivier
Nowak (Ecole Centrale de Lyon), Dominique Picard (Paris 7), and Franck
Tarpin-Bernard (Ecole Centrale de Lyon).

Several student groups have tested preliminary versions.

One of our first opportunities to apply the ideas of wavelets connected
with signal analysis and its modeling occurred during a close and pleasant
cooperation with the team “Analysis and Forecast of the Electrical
Consumption” of Electricité de France (Clamart-Paris) directed first by
Jean-Pierre Desbrosses, and then by Hervé Laffaye, and which included
Xavier Brossat, Yves Deville, and Marie-Madeleine Martin.

xiii

Acknowledgments

Many thanks to those who tested and helped to refine the software and the
printed matter and at last to the MathWorks group and specially to Roy Lurie,
Jim Tung, Bruce Sesnovich, Jad Succari, Jane Carmody, and Paul Costa.

And finally, apologies to those we may have omitted.

About the Authors

Michel Misiti, Georges Oppenheim, and Jean-Michel Poggi are mathematics
professors at Ecole Centrale de Lyon, University of Marne-La-Vallée and
Paris 5 University. Yves Misiti is a research engineer specializing in
Computer Sciences at Paris 11 University.

The authors are members of the “Laboratoire de Mathématique” at
Orsay-Paris 11 University France. Their fields of interest are statistical
signal processing, stochastic processes, adaptive control, and wavelets. The
authors’ group, established more than 15 years ago, has published numerous
theoretical papers and carried out applications in close collaboration with
industrial teams. For instance:

• Robustness of the piloting law for a civilian space launcher for which an
expert system was developed

• Forecasting of the electricity consumption by nonlinear methods

• Forecasting of air pollution

Notes by Yves Meyer

The history of wavelets is not very old, at most 10 to 15 years. The field
experienced a fast and impressive start, characterized by a close-knit
international community of researchers who freely circulated scientific
information and were driven by the researchers’ youthful enthusiasm. Even as
the commercial rewards promised to be significant, the ideas were shared, the
trials were pooled together, and the successes were shared by the community.

There are lots of successes for the community to share. Why? Probably
because the time is ripe. Fourier techniques were liberated by the appearance
of windowed Fourier methods that operate locally on a time-frequency
approach. In another direction, Burt-Adelson’s pyramidal algorithms, the
quadrature mirror filters, and filter banks and subband coding are available.

xiv

Acknowledgments

The mathematics underlying those algorithms existed earlier, but new
computing techniques enabled researchers to try out new ideas rapidly. The
numerical image and signal processing areas are blooming.

The wavelets bring their own strong benefits to that environment: a local
outlook, a multiscaled outlook, cooperation between scales, and a time-scale
analysis. They demonstrate that sines and cosines are not the only useful
functions and that other bases made of weird functions serve to look at new
foreign signals, as strange as most fractals or some transient signals.

Recently, wavelets were determined to be the best way to compress a huge
library of fingerprints. This is not only a milestone that highlights the
practical value of wavelets, but it has also proven to be an instructive process
for the researchers involved in the project. Our initial intuition generally was
that the proper way to tackle this problem of interweaving lines and textures
was to use wavelet packets, a flexible technique endowed with quite a subtle
sharpness of analysis and a substantial compression capability. However,
it was a biorthogonal wavelet that emerged victorious and at this time
represents the best method in terms of cost as well as speed. Our intuitions
led one way, but implementing the methods settled the issue by pointing us
in the right direction.

For wavelets, the period of growth and intuition is becoming a time of
consolidation and implementation. In this context, a toolbox is not only
possible, but valuable. It provides a working environment that permits
experimentation and enables implementation.

Since the field still grows, it has to be vast and open. The Wavelet Toolbox
product addresses this need, offering an array of tools that can be organized
according to several criteria:

• Synthesis and analysis tools

• Wavelet and wavelet packets approaches

• Signal and image processing

• Discrete and continuous analyses

• Orthogonal and redundant approaches

• Coding, de-noising and compression approaches

xv

Acknowledgments

What can we anticipate for the future, at least in the short term? It is difficult
to make an accurate forecast. Nonetheless, it is reasonable to think that the
pace of development and experimentation will carry on in many different
fields. Numerical analysis constantly uses new bases of functions to encode its
operators or to simplify its calculations to solve partial differential equations.
The analysis and synthesis of complex transient signals touches musical
instruments by studying the striking up, when the bow meets the cello
string. The analysis and synthesis of multifractal signals, whose regularity
(or rather irregularity) varies with time, localizes information of interest
at its geographic location. Compression is a booming field, and coding and
de-noising are promising.

For each of these areas, the Wavelet Toolbox software provides a way to
introduce, learn, and apply the methods, regardless of the user’s experience.
It includes a command-line mode and a graphical user interface mode, each
very capable and complementing to the other. The user interfaces help the
novice to get started and the expert to implement trials. The command
line provides an open environment for experimentation and addition to the
graphical interface.

In the journey to the heart of a signal’s meaning, the toolbox gives the traveler
both guidance and freedom: going from one point to the other, wandering
from a tree structure to a superimposed mode, jumping from low to high scale,
and skipping a breakdown point to spot a quadratic chirp. The time-scale
graphs of continuous analysis are often breathtaking and more often than not
enlightening as to the structure of the signal.

Here are the tools, waiting to be used.

Yves Meyer
Professor, Ecole Normale Supérieure de Cachan and Institut de France

Notes by Ingrid Daubechies

Wavelet transforms, in their different guises, have come to be accepted as a
set of tools useful for various applications. Wavelet transforms are good to
have at one’s fingertips, along with many other mostly more traditional tools.

Wavelet Toolbox software is a great way to work with wavelets. The toolbox,
together with the power of MATLAB® software, really allows one to write

xvi

Acknowledgments

complex and powerful applications, in a very short amount of time. The
Graphic User Interface is both user-friendly and intuitive. It provides an
excellent interface to explore the various aspects and applications of wavelets;
it takes away the tedium of typing and remembering the various function calls.

Ingrid C. Daubechies
Professor, Princeton University, Department of Mathematics and Program in
Applied and Computational Mathematics

xvii

Preface

xviii

1

Wavelet Applications

This chapter explores various applications of wavelets by presenting a series
of sample analyses.

• “Introduction to Wavelet Analysis” on page 1-2

• “Detecting Discontinuities and Breakdown Points I” on page 1-3

• “Detecting Discontinuities and Breakdown Points II” on page 1-6

• “Detecting Long-Term Evolution” on page 1-8

• “Detecting Self-Similarity” on page 1-10

• “Identifying Pure Frequencies” on page 1-12

• “Suppressing Signals” on page 1-15

• “De-Noising Signals” on page 1-18

• “De-Noising Images” on page 1-21

• “Compressing Images” on page 1-27

• “Fast Multiplication of Large Matrices” on page 1-29

1 Wavelet Applications

Introduction to Wavelet Analysis
Each example is followed by a discussion of the usefulness of wavelet analysis
for the particular application area under consideration.

Use the graphical interface tools to follow along:

1 From the MATLAB command line, type

wavemenu

2 Click on Wavelets 1-D (or another tool as appropriate).

3 Load the sample analysis by selecting the appropriate submenu item from
File > Example Analysis.

Feel free to explore on your own — use the different options provided in the
graphical interface to look at different components of the signal, to compress
or de-noise the signal, to examine signal statistics, or to zoom in and out
on different signal features.

If you want, try loading the corresponding MAT-file from the
MATLAB command line, and use Wavelet Toolbox functions to further
investigate the sample signals. The MAT-files are located in the folder
toolbox/wavelet/wavedemo.

There are also other signals in the wavedemo folder that you can analyze
on your own.

1-2

Detecting Discontinuities and Breakdown Points I

Detecting Discontinuities and Breakdown Points I
The purpose of this example is to show how analysis by wavelets can detect
the exact instant when a signal changes. The discontinuous signal consists of
a slow sine wave abruptly followed by a medium sine wave.

The first- and second-level details (D1 and D2) show the discontinuity most
clearly, because the rupture contains the high-frequency part. Note that if
we were only interested in identifying the discontinuity, db1 would be a more
useful wavelet to use for the analysis than db5.

The discontinuity is localized very precisely: only a small domain around
time = 500 contains any large first- or second-level details.

Here is a noteworthy example of an important advantage of wavelet analysis
over Fourier. If the same signal had been analyzed by the Fourier transform,
we would not have been able to detect the instant when the signal’s frequency
changed, whereas it is clearly observable here.

1-3

1 Wavelet Applications

Details D3 and D4 contain the medium sine wave. The slow sine is clearly
isolated in approximation A5, from which the higher-frequency information
has been filtered.

Discussion
The deterministic part of the signal may undergo abrupt changes such as a
jump, or a sharp change in the first or second derivative. In image processing,
one of the major problems is edge detection, which also involves detecting
abrupt changes. Also in this category, we find signals with very rapid
evolutions such as transient signals in dynamic systems.

The main characteristic of these phenomena is that the change is localized in
time or in space.

The purpose of the analysis is to determine

• The site of the change (e.g., time or position)

• The type of change (a rupture of the signal, or an abrupt change in its
first or second derivative)

• The amplitude of the change

The local aspects of wavelet analysis are well adapted for processing this type
of event, as the processing scales are linked to the speed of the change.

Guidelines for Detecting Discontinuities
Short wavelets are often more effective than long ones in detecting a signal
rupture. In the initial analysis scales, the support is small enough to allow
fine analysis. The shapes of discontinuities that can be identified by the
smallest wavelets are simpler than those that can be identified by the longest
wavelets. Therefore, to identify

• A signal discontinuity, use the haar wavelet

• A rupture in the j-th derivative, select a sufficiently regular wavelet with at
least j vanishing moments. (See “Detecting Discontinuities and Breakdown
Points II” on page 1-6.)

1-4

Detecting Discontinuities and Breakdown Points I

The presence of noise, which is after all a fairly common situation in signal
processing, makes identification of discontinuities more complicated. If the
first levels of the decomposition can be used to eliminate a large part of the
noise, the rupture is sometimes visible at deeper levels in the decomposition.

Check, for example, the sample analysis File > Example Analysis > Basic
Signals > ramp + white noise (MAT-file wnoislop). The rupture is visible
in the level-six approximation (A6) of this signal.

1-5

1 Wavelet Applications

Detecting Discontinuities and Breakdown Points II
The purpose of this example is to show how analysis by wavelets can detect a
discontinuity in one of a signal’s derivatives. The signal, while apparently a
single smooth curve, is actually composed of two separate exponentials that
are connected at time = 500. The discontinuity occurs only in the second
derivative, at time = 500.

We have zoomed in on the middle part of the signal to show more clearly
what happens around time = 500. The details are high only in the middle
of the signal and are negligible elsewhere. This suggests the presence of
high-frequency information — a sudden change or discontinuity — around
time = 500.

1-6

Detecting Discontinuities and Breakdown Points II

Discussion
Regularity can be an important criterion in selecting a wavelet. We have
chosen to use db4, which is sufficiently regular for this analysis. Had we
chosen the haar wavelet, the discontinuity would not have been detected. If
you try repeating this analysis using haar at level two, you’ll notice that the
details are equal to zero at time = 500.

Note that to detect a singularity, the selected wavelet must be sufficiently
regular, which implies a longer filter impulse response.

See “Frequently Asked Questions” on page 6-62 and “Wavelet Families:
Additional Discussion” on page 6-73 for a discussion of the mathematical
meaning of regularity and a comparison of the regularity of various wavelets.

1-7

1 Wavelet Applications

Detecting Long-Term Evolution
The purpose of this example is to show how analysis by wavelets can detect
the overall trend of a signal. The signal in this case is a ramp obscured by
“colored” (limited-spectrum) noise. (We have zoomed in along the x-axis to
avoid showing edge effects.)

There is so much noise in the original signal, s, that its overall shape is not
apparent upon visual inspection. In this level-6 analysis, we note that the
trend becomes more and more clear with each approximation, A1 to A6. Why
is this?

The trend represents the slowest part of the signal. In wavelet analysis
terms, this corresponds to the greatest scale value. As the scale increases, the
resolution decreases, producing a better estimate of the unknown trend.

1-8

Detecting Long-Term Evolution

Another way to think of this is in terms of frequency. Successive
approximations possess progressively less high-frequency information. With
the higher frequencies removed, what’s left is the overall trend of the signal.

Discussion
Wavelet analysis is useful in revealing signal trends, a goal that is
complementary to the one of revealing a signal hidden in noise. It’s important
to remember that the trend is the slowest part of the signal. If the signal
itself includes sharp changes, then successive approximations look less and
less similar to the original signal.

Consider the demo analysis File > Example Analysis > Basic Signals
> Step signal (MAT-file wstep.mat). It is instructive to analyze this
signal using the Wavelet 1-D tool and see what happens to the successive
approximations. Try it.

1-9

1 Wavelet Applications

Detecting Self-Similarity
The purpose of this example is to show how analysis by wavelets can detect a
self-similar, or fractal, signal. The signal here is the Koch curve — a synthetic
signal that is built recursively.

This analysis was performed with the Continuous Wavelet 1-D graphical
tool. A repeating pattern in the wavelet coefficients plot is characteristic of a
signal that looks similar on many scales.

Wavelet Coefficients and Self-Similarity
From an intuitive point of view, the wavelet decomposition consists of
calculating a “resemblance index” between the signal and the wavelet. If the
index is large, the resemblance is strong, otherwise it is slight. The indices
are the wavelet coefficients.

1-10

Detecting Self-Similarity

If a signal is similar to itself at different scales, then the “resemblance
index” or wavelet coefficients also will be similar at different scales. In the
coefficients plot, which shows scale on the vertical axis, this self-similarity
generates a characteristic pattern.

Discussion
The work of many authors and the trials that they have carried out suggest
that wavelet decomposition is very well adapted to the study of the fractal
properties of signals and images.

When the characteristics of a fractal evolve with time and become local, the
signal is called a multifractal. The wavelets then are an especially suitable
tool for practical analysis and generation.

1-11

1 Wavelet Applications

Identifying Pure Frequencies
The purpose of this example is to show how analysis by wavelets can
effectively perform what is thought of as a Fourier-type function — that is,
resolving a signal into constituent sinusoids of different frequencies. The
signal is a sum of three pure sine waves.

Discussion
The signal is a sum of three sines: slow, medium, and rapid, which have
periods (relative to the sampling period of 1) of 200, 20, and 2, respectively.

The slow, medium, and rapid sinusoids appear most clearly in approximation
A4, detail D4, and detail D1, respectively. The slight differences that can be
observed on the decompositions can be attributed to the sampling period.

1-12

Identifying Pure Frequencies

Detail D1 contains primarily the signal components whose period is between 1
and 2 (i.e., the rapid sine), but this period is not visible at the scale that is
used for the graph. Zooming in on detail D1 (see below) reveals that each
“belly” is composed of 10 oscillations, and this can be used to estimate the
period. We indeed find that it is close to 2.

The detail D3 and (to an even greater extent), the detail D4 contain the
medium sine frequencies. We notice that there is a breakdown between
approximations A3 and A4, from which the medium frequency information has
been subtracted. We should therefore use approximations A1 to A3 to estimate
the period of the medium sine. Zooming in on A1 reveals a period of around 20.

Now only the period of the slow sine remains to be determined. Examination
of approximation A4 (see the figure in “Identifying Pure Frequencies” on page
1-12) shows that the distance between two successive maximums is 200.

1-13

1 Wavelet Applications

This slow sine still is visible in approximation A5, but were we to extend
this analysis to further levels, we would find that it disappears from the
approximation and moves into the details at level 8.

Signal Component Found In Period Frequency

Slow sine Approximation A4 200 0.005

Medium sine Detail D4 20 0.05

Rapid sine Detail D1 2 0.5

This also can be obtained automatically using the scal2frq function, which
associates pseudo-frequencies to scales for a given wavelet.

lev = [1:5]; a = 2.^lev; % scales.
wname ='db3';
delta = 1;
f = scal2frq(a,wname,delta); % corresponding pseudo-frequencies.
per = 1./f; % corresponding pseudo-periods.

Leading to

Level Scale Pseudo-Period Pseudo-Frequency

1 2 2.5 0.4

2 4 5 0.2

3 8 10 0.1

4 16 20 0.05

5 32 40 0.025

In summation, we have used wavelet analysis to determine the frequencies
of pure sinusoidal signal components. We were able to do this because the
different frequencies predominate at different scales, and each scale is taken
into account by our analysis.

1-14

Suppressing Signals

Suppressing Signals
The purpose of this example is to illustrate the property that causes the
decomposition of a polynomial to produce null details, provided the number of
vanishing moments of the wavelet (N for a Daubechies wavelet dbN) exceeds
the degree of the polynomial. The signal here is a second-degree polynomial
combined with a small amount of white noise.

Note that only the noise comes through in the details. The peak-to-peak
magnitude of the details is about 2, while the amplitude of the polynomial
signal is on the order of 105.

The db3 wavelet, which has three vanishing moments, was used for this
analysis. Note that a wavelet of the Daubechies family with fewer vanishing
moments would fail to suppress the polynomial signal. For more information,
see the section “Daubechies Wavelets: dbN” on page 6-74.

1-15

1 Wavelet Applications

Here is what the first three details look like when we perform the same
analysis with db2.

The peak-to-peak magnitudes of the details D1, D2, and D3 are 2, 10, and 40,
respectively. These are much higher detail magnitudes than those obtained
using db3.

Discussion
For the db2 analysis, the details for levels 2 to 4 show a periodic form that
is very regular, and that increases with the level. This is explained by the
fact that the detail for level j takes into account primarily the fluctuations of
the polynomial function around its mean value on dyadic intervals that are 2j

1-16

Suppressing Signals

long. The fluctuations are periodic and very large in relation to the details
of the noise decomposition.

On the other hand, for the db3 analysis, we find the presence of white noise
thus indicating that the polynomial does not come into play in any of the
details. The wavelet suppresses the polynomial part and analyzes the noise.

Suppressing part of a signal allows us to highlight the remainder.

Vanishing Moments
The ability of a wavelet to suppress a polynomial depends on a crucial
mathematical characteristic of the wavelet called its number of vanishing
moments. A technical discussion of vanishing moments appears in the
sections “Frequently Asked Questions” on page 6-62 and “Wavelet Families:
Additional Discussion” on page 6-73. For the present discussion, it suffices
to think of “moment” as an extension of “average.” Since a wavelet’s average
value is zero, it has (at least) one vanishing moment.

More precisely, if the average value of xk ψ(x) is zero (where ψ(x) is the
wavelet function), for k = 0, ..., n, then the wavelet has n + 1 vanishing
moments and polynomials of degree n are suppressed by this wavelet.

1-17

1 Wavelet Applications

De-Noising Signals
The purpose of this example is to show how to de-noise a signal using wavelet
analysis. This example also gives us an opportunity to demonstrate the
automatic thresholding feature of the Wavelet 1-D graphical interface tool.
The signal to be analyzed is a Doppler-shifted sinusoid with some added noise.

Discussion
We note that the highest frequencies appear at the start of the original signal.
The successive approximations appear less and less noisy; however, they also
lose progressively more high-frequency information. In approximation A5, for
example, about the first 20% of the signal is truncated.

Click the De-noise button to bring up theWavelet 1-D De-Noising window.
This window shows each detail along with its automatically set de-noising
threshold.

1-18

De-Noising Signals

Click the De-noise button. On the screen, the original and de-noised signals
appear superimposed in red and yellow, respectively.

1-19

1 Wavelet Applications

Note that the de-noised signal is flat initially. Some of the highest-frequency
signal information was lost during the de-noising process, although less was
lost here than in the higher level approximations A4 and A5.

For this signal, wavelet packet analysis does a better job of removing the
noise without compromising the high-frequency information. Explore on your
own: try repeating this analysis using theWavelet Packet 1-D tool. Select
the menu item File > Example Analysis > noisdopp.

1-20

De-Noising Images

De-Noising Images
The purpose of this example is to show how to de-noise an image using both a
two-dimensional wavelet analysis and a two-dimensional stationary wavelet
analysis. De-noising is one of the most important applications of wavelets.

The image to be de-noised is a noisy version of a piece of the following image.

For this example, switch the extension mode to symmetric padding using
the command

dwtmode('sym')

Open the Wavelet 2-D tool, select from the File menu the Load Image
option, and select the MAT-file noiswom.mat, which should reside in the
MATLAB folder toolbox/wavelet/wavedemo.

The image is loaded into the Wavelet 2-D tool. Select the haar wavelet and
select 4 from the level menu, and then click the Analyze button.

The analysis appears in the Wavelet 2-D window.

1-21

1 Wavelet Applications

Click the De-noise button (located at the middle right) to bring up the
Wavelet 2-D -- De-noising window.

Discussion
The graphical tool provides automatically generated thresholds. From the
Select thresholding method menu, select the item Penalize low and
click the De-noise button.

1-22

De-Noising Images

The de-noised image exhibits some blocking effects. Let’s try another wavelet.
Click the Close button to go back to the Wavelet 2-D window. Select the
sym6 wavelet, and then click the Analyze button. Click the De-noise button
to bring up the Wavelet 2-D -- De-noising window again.

From the Select thresholding method menu, select the item Penalize
low, and click the De-noise button.

The de-noised image exhibits some ringing effects. Let’s try another strategy
based on the two-dimensional stationary wavelet analysis to de-noise images.
The basic idea is to average many slightly different discrete wavelet analyses.

1-23

1 Wavelet Applications

For more information, see the section “Discrete Stationary Wavelet Transform
(SWT)” on page 6-45.

Click the Close button to go back to the Wavelet 2-D window and click the
Close button again. Open the SWT De-noising 2-D tool, select from the
File menu the Load Image option and select the MAT-file noiswom.mat.
Select the haar wavelet and select 4 from the level menu, and then click the
Decompose Image button.

The selected thresholding method is Penalize low. Use the Sparsity slider
to adjust the threshold value close to 44.5 (the same as before to facilitate the
comparison with the first trial), and then click the De-noise button.

1-24

De-Noising Images

The result is more satisfactory. It’s possible to improve it slightly.

Select the sym6 wavelet and click the Decompose Image button. Use the
Sparsity slider to adjust the threshold value close to 40.44 (the same as
before to facilitate the comparison with the second trial), and then click the
De-noise button.

At the end of this example, turn back the extension mode to zero-padding
using the command

1-25

1 Wavelet Applications

dwtmode('zpd')

1-26

Compressing Images

Compressing Images
The purpose of this example is to show how to compress an image using
two-dimensional wavelet analysis. Compression is one of the most important
applications of wavelets. The image to be compressed is a fingerprint.

For this example, open theWavelet 2-D tool and select the menu item File >
Example Analysis > at level 3, with haar > finger.

The analysis appears in the Wavelet 2-D tool. Click the Compress button
(located at the middle right) to bring up the Wavelet 2-D Compression
window.

Discussion
The graphical tool provides an automatically generated threshold. From
the Select thresholding method menu, select Remove near 0, setting

1-27

1 Wavelet Applications

the threshold to 3.5. Then, click the Compress button. Values under the
threshold are forced to zero, achieving about 42% zeros while retaining almost
all (99.96%) the energy of the original image.

The automatic thresholds usually achieve reasonable and various balances
between the number of zeros and retained image energy. Depending on your
data and your analysis criteria, you may find setting more or less aggressive
thresholds achieves better results.

Here we’ve set the global threshold to around 30. This results in a compressed
image consisting of about 92% zeros with 97.7% retained energy.

1-28

Fast Multiplication of Large Matrices

Fast Multiplication of Large Matrices
This section illustrates matrix-vector multiplication in the wavelet domain.

• The problem is

let m be a dense matrix of large size (n, n). We want to perform a large
number, L, of multiplications of m by vectors v.

• The idea is

Stage 1: (executed once) Compute the matrix approximation, sm, at a
suitable level k. The matrix will be assimilated with an image.

Stage 2: (executed L times) divided in the following three steps:

1 Compute vector approximation.

2 Compute multiplication in wavelet domain.

3 Reconstruct vector approximation.

It is clear that when sm is a sufficiently good approximation of m, the error
with respect to ordinary multiplication can be small. This is the case in the
first example below where m is a magic square. Conversely, when the wavelet
representation of the matrix m is dense the error will be large (for example,
if all the coefficients have the same order of magnitude). This is the case
in the second example below where m is two-dimensional Gaussian white
noise. The figure in Example 1 compares for n = 512, the number of floating
point operations (flops) required by wavelet based method and by ordinary
method versus L.

Example 1: Effective Fast Matrix Multiplication

n = 512;
lev = 5;
wav = 'db1';

% Wavelet based matrix multiplication by a vector:
% a "good" example
% Matrix is magic(512) Vector is (1:512)

m = magic(n);

1-29

1 Wavelet Applications

v = (1:n)';
[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters(wav);

% ordinary matrix multiplication by a vector.
p = m * v;

% The number of floating point operations used is 524,288

% Compute matrix approximation at level 5.
sm = m;
for i = 1:lev

sm = dyaddown(conv2(sm,Lo_D),'c');
sm = dyaddown(conv2(sm,Lo_D'),'r');

end

% The number of floating point operations used is 2,095,154

% The three steps:
% 1. Compute vector approximation.
% 2. Compute multiplication in wavelet domain.
% 3. Reconstruct vector approximation.

sv = v;
for i = 1:lev, sv = dyaddown(conv(sv,Lo_D)); end
sp = sm * sv;
for i = 1:lev, sp = conv(dyadup(sp),Lo_R); end
sp = wkeep(sp,length(v));

% Now, the number of floating point operations used is 9058

% Relative square norm error in percent when using wavelets.
rnrm = 100 * (norm(p-sp)/norm(p))

rnrm =
2.9744e-06

Example 2: Ineffective Fast Matrix Multiplication
The commands used are the same as in Example 1, but applied to a new
matrix m.

1-30

Fast Multiplication of Large Matrices

% Wavelet based matrix multiplication by a vector:
% a "bad" example with a randn matrix.
% Change the matrix m of example1 using:
randn('state',0);
m = randn(n,n);

Then, you obtain

% Relative square norm error in percent
rnrm = 100 * (norm(p-sp)/norm(p))

rnrm =
99.2137

1-31

1 Wavelet Applications

1-32

2

Wavelets in Action:
Examples and Case Studies

This chapter presents examples of wavelet decomposition. Suggested areas
for further exploration follow most examples, along with a summary of the
topics addressed by that example. This chapter also includes a case study that
examines the practical uses of wavelet analysis in greater detail, as well as a
demonstration of the application of wavelets for fast multiplication of large
matrices. An extended discussion of many of the topics addressed by the
examples can be found in Chapter 6, “Advanced Concepts”.

• “Illustrated Examples” on page 2-2

• “Case Study: An Electrical Signal” on page 2-39

2 Wavelets in Action: Examples and Case Studies

Illustrated Examples
Fourteen illustrated examples are included in this section, organized as
shown:

Example Equation
Signal
Name MAT-File

“Example 1: A Sum of
Sines” on page 2-6

A sum of sines:

s t t t t1 3 0 3 0 03() sin() sin(.) sin(.)= + +

s1(t) sumsin

“Example 2: A
Frequency Breakdown
(Discontinuity)” on
page 2-10

A frequency breakdown:

 1 500 0 03
501 1000 0 3

2

2

≤ ≤ =
≤ ≤ =

t s t t
t s t t

, () sin(.)
, () sin(.)

s2(t) freqbrk

“Example 3: Uniform
White Noise” on page
2-15

A uniform white noise:
on the interval [–0.5 0.5]

b1(t) whitnois

“Example 4: Colored
AR(3) Noise” on page
2-17

A colored AR(3) noise:

b t b t b t

b t b t
2 2 2

2 1

1 5 1 0 75 2

0 125 3 0 5

() . () . ()

. () () .

= − − − −
− − + +

b2(t) warma

“Example 5:
Polynomial + White
Noise” on page 2-19

A polynomial + a white noise:
on the interval [1 1000]

s t t t b t3
2

11() ()= − + +

s3(t) noispol

“Example 6: A Step
Signal” on page 2-21

A step signal:

 1 500 0
501 1000 20

4

4

≤ ≤ =
≤ ≤ =

t s t
t s t

, ()
, ()

s4(t) wstep

2-2

Illustrated Examples

Example Equation
Signal
Name MAT-File

“Example 7:
Two Proximal
Discontinuities” on
page 2-23

Two proximal discontinuities:

1 499
500 510

511

3
1500
3 30

5

5

5

≤ ≤
≤ ≤

≤

=
=
= −

t
t

t

s t t
s t
s t t

,
,
,

()
()
()

s5(t) nearbrk

“Example 8: A
Second-Derivative
Discontinuity” on
page 2-25

A second-derivative discontinuity:

t R

t f t t

t f t t

∈ − ⊂

< = −

≥ = −

[. .] ;

, () exp()

, () exp()

0 5 0 5

0 4

0

3
2

3
2

s6 is f3 sampled at 10
–3

s6(t) scddvbrk

“Example 9: A Ramp +
White Noise” on page
2-27

A ramp + a white noise:

1 499
3

500
500 1000 3

7 1

7

≤ ≤ = +

≤ ≤ = +

t s t
t

b t

t s t

, () ()

, () bb t1()

s7(t) wnoislop

“Example 10: A Ramp
+ Colored Noise” on
page 2-29

A ramp + a colored noise:

1 499
500

500 1000 1

8 2

8

≤ ≤ = +

≤ ≤ = +

t s t
t

b t

t s t b

, () ()

, () 22()t

s8(t) cnoislop

“Example 11: A Sine +
White Noise” on page
2-31

A sine + a white noise:

s t t b t9 10 03() sin(.) ()= +

s9(t) noissin

“Example 12: A
Triangle + A Sine”
on page 2-33

A triangle + a sine:

1 500
1

500
0 3

501 1000

10≤ ≤ = − +

≤ ≤

t s t
t

t

t s

, () sin(.)

, 110
1000

500
0 3() sin(.)t

t
t= − +

s10(t) trsin

2-3

2 Wavelets in Action: Examples and Case Studies

Example Equation
Signal
Name MAT-File

“Example 13: A
Triangle + A Sine
+ Noise” on page 2-35

A triangle + a sine + a noise:

501 1000
1000

500
0 311 1

≤ ≤

= − + +

t

s t
t

t b

,

() sin(.) (()

, () sin(.) ()

t

t s t
t

t b t1 500
1

500
0 311 1≤ ≤ = − + +

s11(t) wntrsin

“Example 14: A
Real Electricity
Consumption Signal”
on page 2-37

A real electricity consumption signal — leleccum

Please note that

• All the decompositions use Daubechies wavelets.

• The examples use wavedec to obtain the scaling (approximation) and
wavelet (detail) coefficients at various levels. For convenience, the
examples use these coefficients to reconstruct the signal projections
onto the appropriate approximation and detail subspaces using wrcoef.
These projections are referred to using the shorthand notation A5 for
approximation space at level 5 and D1 for detail space at level 1. In other
places in the documentation, the notation A5 and D1 may refer to scaling
and wavelet coefficients at level 5 and 1 respectively. The context makes
clear which interpretation is correct.

Advice to the Reader
You should follow along and process these examples on your own, using either
the graphical interface or the command line functions.

Complete code is provided to follow along using the command line. If you
prefer to use a GUI:

1 Enter wavemenu at the command line. This opens the Wavelet Toolbox
Main Menu.

2-4

Illustrated Examples

2 Select theWavelet 1-D menu option to open the Wavelet 1-D tool.

3 From the Wavelet 1-D tool, choose the File > Example Analysis menu
option and select the appropriate signal from the menu.

4 Selecting the signal performs the wavelet decomposition and displays the
projections onto the approximation and detail subspaces.

The GUI operation does not reproduce all the operations illustrated in the
text using command line functionality.

The following figure illustrates the signal selection operation within the
Wavelet 1-D tool.

2-5

2 Wavelets in Action: Examples and Case Studies

Example 1: A Sum of Sines
Analyzing wavelet: db3

Decomposition levels: 5

The signal in sumsin.mat is the sum of three sine waves with frequencies
of 0.03 radians/sample, 0.3 radians/sample, and 3 radians/sample. If you
assume the sampling interval is 1 second, the three frequencies correspond to
0.0048, 0.0477, and 0.4775 cycles/second (Hz). The corresponding periods are
approximately 200, 20, and 2 samples respectively.

Let Δt denote the sampling interval. The wavelet coefficients at scale J
approximate a bandpass filtering of the input data in the interval:

[,]
1

2

1

21J Jt t

The scaling, or approximation, coefficients at scale J approximate a bandpass
filtering of the input data in the interval:

[,]0
1

2 1J t

The frequency localization depends on the analyzing wavelet and should be
viewed as an approximation. Based on this bandpass approximation, you
should find the highest frequency sine wave localized in the finest scale (D1)
wavelet coefficients, the 0.0477 Hz component in the level 4 details (D4), and
the 0.0048 Hz component in the level 5 approximation coefficients (A5).

To obtain the wavelet decomposition of the data in sumsin.mat down to level
using the db3 wavelet use wavedec.

load sumsin
[Coeffs,L] = wavedec(sumsin,5,'db3');

The following loop extracts the detail and approximation coefficients at levels
1 to 5 and uses wrcoef to compute orthogonal projections of the signal onto
the corresponding subspaces.

2-6

Illustrated Examples

Dproject = zeros(length(sumsin),5);
Aproject = zeros(length(sumsin),5);

for J = 1:5
Dproject(:,J) = wrcoef('d',Coeffs,L,'db3',J);
Aproject(:,J) = wrcoef('a',Coeffs,L,'db3',J);
end

At each level, the orthogonal projections onto the approximation (scaling)
and detail (wavelet) spaces constitute a decomposition of the signal lowpass
approximation into a direct sum of orthogonal subspaces. This means that the
sum of the first columns of Aproject and Dproject constitute an orthogonal
decomposition of the original signal, S=A1+D1.

sigdecomp = Aproject(:,1)+Dproject(:,1);
subplot(211)
plot(sumsin);
title('Original Signal'); ylabel('Amplitude');
subplot(212);
plot(sigdecomp);
title('Signal Reconstruction A1+D1'); ylabel('Amplitude');
xlabel('Samples');
% l2 norm of the difference between the signal and
% A1+D1
norm(sumsin'-sigdecomp,2)

2-7

2 Wavelets in Action: Examples and Case Studies

Plot the projections onto the D1, D4, and A5 subspaces. These projections
approximately localize the oscillations with periods of 2, 20, and 200 samples
respectively.

subplot(311)
plot(Dproject(:,1)); title('D1');
ylabel('Amplitude');
subplot(312);
plot(Dproject(:,4)); title('D4');
ylabel('Amplitude');
subplot(313);
plot(Aproject(:,5)); title('A5');
xlabel('Samples'); ylabel('Amplitude');

Finally, the following code produces a plot to demonstrate that the lowpass
approximation at one level higher in resolution is the direct sum of the lowpass
(scaling) and highpass (wavelet) projections from one level lower in resolution.

N = 1;
for J = 2:5

subplot(4,2,N)
plot(Aproject(:,J-1));
title(['A ', num2str(J-1)]);
subplot(4,2,N+1)
plot(Aproject(:,J)+Dproject(:,J));

2-8

Illustrated Examples

title(['A ', num2str(J) '+D ', num2str(J)]);
N = N+2;

end

The left column of the preceding plot shows the projection onto the
approximation space at level J, while the right column shows the sum of the
projections onto the approximation and detail spaces at level J-1.

Example 1: A Sum of Sines

Addressed topics • Identifying pure frequencies

• The effect of a wavelet on a sine wave

• Projections onto approximation (scaling) and
detail (wavelet) subspaces

• Bandpass nature of wavelet and scaling filters

Further exploration • Compare with a Fourier analysis.

• Change the frequencies. Analyze other linear
combinations.

2-9

2 Wavelets in Action: Examples and Case Studies

Example 2: A Frequency Breakdown (Discontinuity)
Analyzing wavelet: db5

Decomposition levels: 5

The signal consists of two sine waves defined on disjoint intervals. The signal
has a length of 1000 samples. The first 500 samples contain a sine wave with
a frequency of 0.03 radians/sample. Samples 501–1000 contain a sine wave
with a frequency of 0.3 radians/sample. If you assume a sampling interval, Δt,
equal to 1, these frequencies are 0.0048 and 0.0477 Hz.

load freqbrk
plot(freqbrk)
xlabel('Samples'); ylabel('Amplitude');

The signal is not continuous at the frequency transition because the left-hand
and right-hand limits are not equal. You can see this by zooming in on the
frequency transition and using a stem plot.

stem(450:550,freqbrk(450:550)); xlabel('Samples');
ylabel('Amplitude');
text(475,-0.2,'discontinuity \rightarrow');

2-10

Illustrated Examples

A general strength of wavelets is the detection of abrupt changes in the signal.
These transitions are best localized at fine scales where the length of the
wavelet filters is the smallest. To illustrate this, decompose the signal down
to level 5 with the db5 wavelet using wavedec. Compute the projections of the
signal onto the approximation and detail spaces using wrcoef.

[Coeffs,L] = wavedec(freqbrk,5,'db5');
Dproject = zeros(length(freqbrk),5);
Aproject = zeros(length(freqbrk),5);

for J = 1:5
Dproject(:,J) = wrcoef('d',Coeffs,L,'db5',J);
Aproject(:,J) = wrcoef('a',Coeffs,L,'db5',J);
end

Plot the projection onto the level-one approximation space and overlay
the projection onto the level-one detail space to visualize how the wavelet
coefficients isolate the discontinuity.

subplot(211)
plot(Aproject(:,1)); xlabel('Samples'); ylabel('Amplitude');
hold on;
plot(Dproject(:,1),'r','linewidth',2);
subplot(212);
plot(Aproject(:,1)); xlabel('Samples'); ylabel('Amplitude');

2-11

2 Wavelets in Action: Examples and Case Studies

hold on;
plot(Dproject(:,1),'r','linewidth',2);
axis([450 550 -1 1]);
legend('A1','D1','Location','SouthWest');

The signal projection onto D1 is zero except in the neighborhood of the
discontinuity. If you are only interested in localizing a discontinuity
as accurately as possible, the length of the wavelet filter is a critical
consideration. The shorter the wavelet filter, the more precise the localization
of a discontinuity in the time or space domain, but the poorer the frequency
localization properties. Accordingly, the db1 wavelet outperforms the
db5 wavelet in the localization of the discontinuity, but the db5 wavelet
outperforms the db1 wavelet in segregation of the sinusoidal components.

To localize the sinusoidal components, let Δt denote the sampling interval.
The wavelet coefficients at scale J approximate a bandpass filtering of the
input data in the interval:

[,]
1

2

1

21J Jt t

The scaling, or approximation, coefficients at scale J approximate a bandpass
filtering of the input data in the interval:

2-12

Illustrated Examples

[,]0
1

2 1J t

Based on the preceding result, you expect D4 to isolate the sine wave at
0.0477 Hz and A5 to contain the sine wave at 0.0048 Hz.

subplot(211)
plot(Aproject(:,5)); ylabel('Amplitude');
title('Projection onto the A5 subspace');
subplot(212);
plot(Dproject(:,4)); xlabel('Samples');
ylabel('Amplitude');
title('Projection onto the D4 subspace');

2-13

2 Wavelets in Action: Examples and Case Studies

Example 2: A Frequency Breakdown

Addressed topics • Suppressing signals

• Detecting long-term evolution

Further exploration • Compare to the signal s1.

• On a longer signal, select a deeper level of
decomposition in such a way that the slow sinusoid
appears into the details.

• Compare with a Fourier analysis.

• Compare with a windowed Fourier analysis.

2-14

Illustrated Examples

Example 3: Uniform White Noise
Analyzing wavelet: db3

Decomposition levels: 5

At all levels we encounter noise-type signals that are clearly irregular. This is
because all the frequencies carry the same energy. The variances, however,
decrease regularly between one level and the next as can be seen reading the
detail chart (on the right) and the approximations (on the left).

The variance decreases two-fold between one level and the next, i.e.,
variance(Dj) = variance(Dj –1) / 2. Lastly, it should be noted that the details and
approximations are not white noise, and that these signals are increasingly
interdependent as the resolution decreases. On the other hand, the wavelet
coefficients are random, noncorrelated variables. This property is not evident
on the reconstructed signals shown here, but it can be guessed at from the
representation of the coefficients.

2-15

2 Wavelets in Action: Examples and Case Studies

Example 3: Uniform White Noise

Addressed topics • Processing noise

• The shapes of the decomposition values

• The evolution of these shapes according to level;
the correlation increases, the variance decreases

Further exploration • Compare the frequencies included in the details
with those in the approximations.

• Study the values of the coefficients and their
distribution.

• On the continuous analysis, identify the chaotic
aspect of the colors.

• Replace the uniform white noise by a Gaussian
white noise or other noise.

2-16

Illustrated Examples

Example 4: Colored AR(3) Noise
Analyzing wavelet: db3

Decomposition levels: 5

Note AR(3) means AutoRegressive model of order 3.

This figure can be examined in view of “Example 3: Uniform White Noise”
on page 2-15, since we are confronted here with a nonwhite noise whose
spectrum is mainly at the higher frequencies. Therefore, it is found primarily
in D1, which contains the major portion of the signal. In this situation, which
is commonly encountered in practice, the effects of the noise on the analysis
decrease considerably more rapidly than in the case of white noise. In A3, A4,
and A5, we encounter the same scheme as that in the analysis of b1 (see the
table in “Example 3: Uniform White Noise” on page 2-15), the noise from
which b2 is built using linear filtering. (b1 and b2 are defined explicitly in
“Illustrated Examples” on page 2-2, Examples 3 and 4.)

2-17

2 Wavelets in Action: Examples and Case Studies

Example 4: Colored AR(3) Noise

Addressed topics • Processing noise

• The relative importance of different details

• The relative importance of D1 and A1

Further exploration • Compare the detail frequencies with those in the
approximations.

• Compare approximations A3, A4, and A5 with those
shown in “Example 3: Uniform White Noise” on
page 2-15.

• Replace AR(3) with an ARMA (AutoRegressive
Moving Average) model noise. For instance,

b t b t b t b t

b t b t
3 3 3 3

1 1

15 1 0 75 2 0 125 3

0 7 1

() () . () . ()

() . ()

= − − − − − −
+ − −

• Study an ARIMA (Integrated ARMA) model noise.
For instance,

b t b t b t4 4 31() () ()= − +

• Check that each detail can be modeled by an
ARMA process.

2-18

Illustrated Examples

Example 5: Polynomial + White Noise
Analyzing wavelets: db2 and db3

Decomposition levels: 4

The purpose of this analysis is to illustrate the property that causes the
decomposition by dbN of a p-degree polynomial to produce null details as long
as N > p. In this case, p = 2 and we examine the first four levels of details for
two values of N: one is too small, N = 2 on the left, and the other is sufficient,
N = 3 on the right. The approximations are left out since they differ very
little from the signal itself.

For db2 (on the left), we obtain the decomposition of t2 + b1(t), since the –t + 1
part of the signal is suppressed by the wavelet. In fact, with the exception
of level 1, where noise-generated irregularities can be seen, the details for
levels 2 to 4 show a periodic form that is very regular, and which increases
with the level. This is because the detail for level j takes into account that
the fluctuations of the function around its mean value on dyadic intervals are
long. The fluctuations are periodic and very large in relation to the details
of the noise decomposition.

On the other hand, for db3 (on the right) we again find the presence of white
noise, thus indicating that the polynomial does not come into play in any of the
details. The wavelet suppresses the polynomial part and analyzes the noise.

2-19

2 Wavelets in Action: Examples and Case Studies

Example 5: Polynomial + White Noise

Addressed topics • Suppressing signals

• Compare the results of the processing for the
following wavelets: the short db2 and the longer
db3.

• Explain the regularity that is visible in D3 and D4
in the analysis by db2.

Further exploration • Increase noise intensity and repeat the analysis.

2-20

Illustrated Examples

Example 6: A Step Signal
Analyzing wavelet: db2

Decomposition levels: 5

In this case, we are faced with the simplest example of a rupture (i.e., a step).
The time instant when the jump occurs is equal to 500. The break is detected
at all levels, but it is obviously detected with greater precision in the higher
resolutions (levels 1 and 2) than in the lower ones (levels 4 and 5). It is very
precisely localized at level 1, where only a very small zone around the jump
time can be seen.

It should be noted that the reconstructed details are primarily composed of
the basic wavelet represented in the initial time.

Furthermore, the rupture is more precisely localized when the wavelet
corresponds to a short filter.

2-21

2 Wavelets in Action: Examples and Case Studies

Example 6: A Step Signal

Addressed topics • Detecting breakdown points

• Suppressing signals

• Detecting long-term evolution

• Identifying the range width of the variations of
details and approximations

Further exploration • Use the coefficients of the FIR filter associated
with the wavelet to check the values of D1.

• Replace the step by an impulse.

• Add noise to the signal and repeat the analysis.

2-22

Illustrated Examples

Example 7: Two Proximal Discontinuities
Analyzing wavelet: db2 and db7

Decomposition levels: 5

The signal is formed of two straight lines with identical slopes, extending
across a very short plateau. On the initial signal, the plateau is in fact barely
visible to the naked eye. Two analyses are thus carried out: one on a well
localized wavelet with the short filter (db2, shown on the left side of the
figure); and the other on a wavelet having a longer filter (db7, shown on the
right side of the figure).

In both analyses, the plateau is detected clearly. With the exception of a fairly
limited domain, D1 is equal to zero. The regularity of the signal in the plateau,
however, is clearly distinguished for db2 (for which plateau beginning and
end time are distinguished), whereas for db7 both discontinuities are fused
and only the entire plateau can be said to be visible.

This example suggests that the selected wavelets should be associated with
short filters to distinguish proximal discontinuities of the first derivative. A
look at the other detail levels again shows the lack of precision when detecting
at low resolutions. The wavelet filters the straight line and analyzes the
discontinuities.

2-23

2 Wavelets in Action: Examples and Case Studies

Example 7: Two Proximal Discontinuities

Addressed topics • Detecting breakdown points

Further exploration • Move the discontinuities closer together and
further apart.

• Add noise to the signal until the rupture is no
longer visible.

• Try using other wavelets, haar for instance.

2-24

Illustrated Examples

Example 8: A Second-Derivative Discontinuity
Analyzing wavelets: db1 and db4

Decomposition levels: 2

This figure shows that the regularity can be an important criterion in
selecting a wavelet. The basic function is composed of two exponentials that
are connected at 0, and the analyzed signal is the sampling of the continuous
function with increments of 10–3. The sampled signal is analyzed using two
different wavelets: db1, which is insufficiently regular (shown on the left
side of the figure); and db4, which is sufficiently regular (shown on the right
side of the figure).

Looking at the figure on the left, notice that the singularity has not been
detected in the extent that the details are equal to 0 at 0. The black areas
correspond to very rapid oscillations of the details. These values are equal to
the difference between the function and an approximation using a constant
function. Close to 0, the slow decrease of the details absolute values followed
by a slow increase is due to the fact that the function derivative is zero and
continuous at 0. The value of the details is very small (close to 10–3 for db1
and 10–6 for db4), since the signal is very smooth and does not contain any
high frequency. This value is even smaller for db4, since the wavelet is more
regular than db1.

However, with db4 (right side of the figure), the discontinuity is well detected;
the details are high only close to 0, and are 0 everywhere else. This is the only
element that can be derived from the analysis. In this case, as a conclusion,
notice that the selected wavelet must be sufficiently regular, which implies a
longer filter impulse response to detect the singularity.

Note To produce the figure below you can use the One-Dimensional Wavelet
GUI Tool. Type wavemenu at the MATLAB prompt and click Wavelet 1-D.
Then, select File > Example Analysis > Basic Signals > with db1 at level
2 > Second Derivative Breakdown (and ... with db4 ...). Detail values are
very small, so to get the same shapes you must zoom the y-axis many times
(close to 10–3 for db1 and 10–6 for db4).

2-25

2 Wavelets in Action: Examples and Case Studies

Example 8: A Second-Derivative Discontinuity

Addressed topics • Detecting breakdown points

• Suppressing signals

• Identifying a difficult discontinuity

• Carefully selecting a wavelet to reveal an effect

Further exploration • Calculate the detail values for the Haar wavelet.

• Be aware of parasitic effects: rapid detail
fluctuations may be artifacts.

• Add noise to the signal until the rupture is no
longer visible.

2-26

Illustrated Examples

Example 9: A Ramp + White Noise
Analyzing wavelet: db3

Decomposition levels: 6

The signal is built from a trend plus noise. The trend is a slow linear rise
from 0 to 3, up to t = 500, and becoming constant afterwards. The noise is
a uniform zero-mean white noise, varying between –0.5 and 0.5 (see the
analyzed signal b1).

Looking at the figure, in the chart on the right, we again find the
decomposition of noise in the details. In the charts on the left, the
approximations form increasingly precise estimates of the ramp with less and
less noise. These approximations are quite acceptable from level 3, and the
ramp is well reconstructed at level 6.

We can, therefore, separate the ramp from the noise. Although the noise
affects all scales, its effect decreases sufficiently quickly for the low-resolution
approximations to restore the ramp. It should also be noted that the
breakdown point of the ramp is shown with good precision. This is due to the
fact that the ramp is recovered at too low a resolution.

The uniform noise indicates that the ramp might be best estimated using half
sums for the higher and lower portions of the signal. This approach is not
applicable for other noises.

2-27

2 Wavelets in Action: Examples and Case Studies

Example 9: A Ramp + White Noise

Addressed topics • Detecting breakdown points

• Processing noise

• Detecting long-term evolution

• Splitting signal components

• Identifying noises and approximations

Further exploration • Compare with the white noise b1(t) shown in
“Example 3: Uniform White Noise” on page 2-15.

• Identify the number of levels needed to suppress
the noise almost entirely.

• Change the noise.

2-28

Illustrated Examples

Example 10: A Ramp + Colored Noise
Analyzing wavelet: db3

Decomposition levels: 6

The signal is built in the same manner as in “Example 9: A Ramp + White
Noise” on page 2-27, using a trend plus a noise. The trend is a slow linear
increase from 0 to 1, up to t = 500. Beyond this time, the value remains
constant. The noise is a zero mean AR(3) noise, varying between –3 and 3 (see
the analyzed signal b2). The scale of the noise is indeed six times greater
than that of the ramp. At first glance, the situation seems a little bit less
favorable than in the previous example, in terms of the separation between
the ramp and the noise. This is actually a misconception, since the two signal
components are more precisely separated in frequency.

Looking at the figure, the charts on the right show the detail decomposition of
the colored noise. The charts on the left show a decomposition that resembles
the one in the previous analysis. Starting at level 3, the curves provide
satisfactory approximations of the ramp.

2-29

2 Wavelets in Action: Examples and Case Studies

Example 10: A Ramp + Colored Noise

Addressed topics • Detecting breakdown points

• Processing noise

• Detecting long-term evolution

• Splitting signal components

Further exploration • Compare with the s7(t) signal shown in “Example
9: A Ramp + White Noise” on page 2-27.

• Identify the number of levels needed to suppress
the noise almost entirely.

• Identify the noise characteristics. Use the
coefficients and the command line mode.

2-30

Illustrated Examples

Example 11: A Sine + White Noise
Analyzing wavelet: db5

Decomposition levels: 5

The signal is formed of the sum of two previously analyzed signals: the slow
sine with a period close to 200 and the uniform white noise b1. This example
is an illustration of the linear property of decompositions: the analysis of the
sum of two signals is equal to the sum of analyses.

The details correspond to those obtained during the decomposition of the
white noise.

The sine is found in the approximation A5. This is a high enough level for the
effect of the noise to be negligible in relation to the amplitude of the sine.

2-31

2 Wavelets in Action: Examples and Case Studies

Example 11: A Sine + White Noise

Addressed topics • Processing noise

• Detecting long-term evolution

• Splitting signal components

• Identifying the frequency of a sine

Further exploration • Identify the noise characteristics. Use the
coefficients and the command line mode.

2-32

Illustrated Examples

Example 12: A Triangle + A Sine
Analyzing wavelet: db5

Decomposition levels: 6

The signal is the sum of a sine having a period of approximately 20 and of
a “triangle”.

D1 and D2 are very small. This suggests that the signal contains no
components with periods that are short in relation to the sampling period.

D3 and especially D4 can be attributed to the sine. The jump of the sine from
A3 to D4 is clearly visible.

The details for the higher levels D5 and D6 are small, especially D5.

D6 exhibits some edge effects.

A6 contains the triangle, which includes only low frequencies.

2-33

2 Wavelets in Action: Examples and Case Studies

Example 12: A Triangle + A Sine

Addressed topics • Detecting long-term evolution

• Splitting signal components

• Identifying the frequency of a sine

Further exploration • Try using sinusoids whose period is a power of 2.

2-34

Illustrated Examples

Example 13: A Triangle + A Sine + Noise
Noise Analyzing wavelet: db5

Decomposition levels: 7

The signal examined here is the same as the previous signal plus a uniform
white noise divided by 3. The analysis can, therefore, be compared to the
previous analysis. All differences are due to the presence of the noise.

D1 and D2 are due to the noise.

D3 and especially D4 are due to the sine.

The higher level details are increasingly low, and originate in the noise.

A7 contains a triangle, although it is not as well reconstructed as in the
previous example.

2-35

2 Wavelets in Action: Examples and Case Studies

Example 13: A Triangle + A Sine + Noise

Addressed topics • Detecting long-term evolution

• Splitting signal components

Further exploration • Increase the amplitude of the noise.

• Replace the triangle by a polynomial.

• Replace the white noise by an ARMA noise.

2-36

Illustrated Examples

Example 14: A Real Electricity Consumption Signal
Analyzing wavelet: db3

Decomposition levels: 5

The series presents a peak in the center, followed by two drops, a shallow
drop, and then a considerably weaker peak.

The details for levels 1 and 2 are of the same order of magnitude and give a
good expression of the local irregularities caused by the noise. The detail
for level 3 presents high values in the beginning and at the end of the main
peak, thus allowing us to locate the corresponding drops. The detail D4 shows
coarser morphological aspects for the series (i.e., three successive peaks). This
fits the shape of the curve remarkably well, and includes the essential signal
components for periods of less than 32 time-units. The approximations show
this effect clearly: A1 and A2 bear a strong resemblance; A3 forms a reasonably
accurate approximation of the original signal. A look at A4, however, shows
that a considerable amount of information has been lost.

In this case, as a conclusion, the multiscale aspect is the most interesting and
the most significant feature: the essential components of the electrical signal
used to complete the description at 32 time-units (homogeneous to A5) are the
components with a period between 8 and 16 time-units.

2-37

2 Wavelets in Action: Examples and Case Studies

Example 14: A Real Electricity Consumption Signal

Addressed topics • Detecting long-term evolution

• Splitting signal components

• Detecting breakdown points

• Multiscale analysis

Further exploration • Try the same analysis on various sections of
the signal. Focus on a range other than the
[3600:3700] shown here.

This signal is explored in much greater detail in “Case Study: An Electrical
Signal” on page 2-39.

2-38

Case Study: An Electrical Signal

Case Study: An Electrical Signal
The goal of this section is to provide a statistical description of an electrical
load consumption using the wavelet decompositions as a multiscale analysis.

Two problems are addressed. They both deal with signal extraction from the
load curve corrupted by noise:

1 What information is contained in the signal, and what pieces of information
are useful?

2 Are there various kinds of noises, and can they be distinguished from one
another?

The context of the study is the forecast of the electrical load. Currently,
short-term forecasts are based on the data sampled over 30 minutes. After
eliminating certain components linked to weather conditions, calendar
effects, outliers and known external actions, a SARIMA parametric model
is developed. The model delivers forecasts from 30 minutes to 2 days. The
quality of the forecasts is very high at least for 90% of all days, but the method
fails when working with the data sampled over 1 minute.

Data and the External Information
The data consist of measurement of a complex, highly aggregated plant: the
electrical load consumption, sampled minute by minute, over a 5-week period.
This time series of 50,400 points is partly plotted at the top of the second plot
in the “Analysis of the End of the Night Period” on page 2-42.

External information is given by electrical engineers, and additional
indications can be found in several papers. This information, used to define
reference situations for the purpose of comparison, includes these points:

• The load curve is the aggregation of hundreds of sensors measurements,
thus generating measurement errors.

• Roughly speaking, 50% of the consumption is accounted for by industry,
and the rest by individual consumers. The component of the load
curve produced by industry has a rather regular profile and exhibits

2-39

2 Wavelets in Action: Examples and Case Studies

low-frequency changes. On the other hand, the consumption of individual
consumers may be highly irregular, leading to high-frequency components.

• There are more than 10 million individual consumers.

• The fundamental periods are the weekly-daily cycles, linked to economic
rhythms.

• Daily consumption patterns also change according to rate changes at
different times (e.g., relay-switched water heaters to benefit from special
night rates).

• Missing data have been replaced.

• Outliers have not been corrected.

• For the observations 2400 to 3400, the measurement errors are unusually
high, due to sensors failures.

From a methodological point of view, the wavelet techniques provide a
multiscale analysis of the signal as a sum of orthogonal signals corresponding
to different time scales, allowing a kind of time-scale analysis.

Because of the absence of a model for the 1-minute data, the description
strategy proceeds essentially by successive uses of various comparative
methods applied to signals obtained by the wavelet decomposition.

Without modeling, it is impossible to define a signal or a noise effect.
Nevertheless, we say that any repetitive pattern is due to signal and is
meaningful.

Finally, it is known that two kinds of noise corrupt the signal: sensor errors
and the state noise.

We shall not report here the complete analysis, which is included in the paper
[MisMOP94] (see “References” on page 6-168). Instead, we illustrate the
contribution of wavelet transforms to the local description of time series.
We choose two small samples: one taken at midday, and the other at the
end of the night.

In the first period, the signal structure is complex; in the second one, it is
much simpler. The midday period has a complicated structure because the

2-40

Case Study: An Electrical Signal

intensity of the electricity consumer activity is high and it presents very large
changes. At the end of the night, the activity is low and it changes slowly.

For the local analysis, the decomposition is taken up to the level j = 5, because
25 = 32 is very close to 30 minutes. We are then able to study the components
of the signal for which the period is less than 30 minutes.

The analyzing wavelet used here is db3.

The results are described similarly for the two periods.

Analysis of the Midday Period
This signal (see “Example 14: A Real Electricity Consumption Signal” on
page 2-37) is also analyzed more crudely in “Example 14: A Real Electricity
Consumption Signal” on page 2-37.

The shape is a middle mode between 12:30 p.m. and 1:00 p.m., preceded
and followed by a hollow off-peak, and next a second smoother mode at 1:15
p.m. The approximation A5, corresponding to the time scale of 32 minutes,
is a very crude approximation, particularly for the central mode: there is a
peak time lag and an underestimation of the maximum value. So at this
level, the most essential information is missing. We have to look at lower
scales (4 for instance).

Let us examine the corresponding details.

The details D1 and D2 have small values and may be considered as local
short-period discrepancies caused by the high-frequency components of
sensor and state noises. In this bandpass, these noises are essentially due
to measurement errors and fast variations of the signal induced by millions
of state changes of personal electrical appliances.

The detail D3 exhibits high values at times corresponding to the start and
the end of the original middle mode. It allows time localization of the local
minima.

The detail D4 contains the main patterns: three successive modes. It is
remarkably close to the shape of the curve. The ratio of the values of this level
to the other levels is equal to 5. The detail D5 does not bear much information.

2-41

2 Wavelets in Action: Examples and Case Studies

So the contribution of the level 4 is the highest one, both in qualitative and
quantitative aspects. It captures the shape of the curve in the concerned
period.

In conclusion, with respect to the approximation A5, the detail D4 is the main
additional correction: the components of a period of 8 to 16 minutes contain
the crucial dynamics.

Analysis of the End of the Night Period
The shape of the curve during the end of the night is a slow descent, globally
smooth, but locally highly irregular. One can hardly distinguish two
successive local extrema in the vicinity of time t = 1600 and t = 1625. The
approximation A5 is quite good except at these two modes.

The accuracy of the approximation can be explained by the fact that there
remains only a low-frequency signal corrupted by noises. The massive and
simultaneous changes of personal electrical appliances are absent.

2-42

Case Study: An Electrical Signal

The details D1, D2, and D3 show the kind of variation and have, roughly
speaking, similar shape and mean value. They contain the local short period
irregularities caused by noises, and the inspection of D2 and D3 allows you to
detect the local minimum around t = 1625.

The details D4 and D5 exhibit the slope changes of the regular part of the
signal, and A4 and A5 are piecewise linear.

In conclusion, none of the time scales brings a significant contribution
sufficiently different from the noise level, and no additional correction is
needed. The retained approximation is A4 or A5.

All the figures in this paragraph are generated using the graphical user
interface tools, but the user can also process the analysis using the command
line mode. The following example corresponds to a command line equivalent
for producing the figure below.

2-43

2 Wavelets in Action: Examples and Case Studies

% Load the original 1-D signal, decompose, reconstruct details
% and plot.
% Load the signal.
load leleccum; s = leleccum;

% Decompose the signal s at level 5 using the wavelet db3.
w = 'db3';
[c,l] = wavedec(s,5,w);

% Reconstruct the details using the decomposition structure.
for i = 1:5

D(i,:) = wrcoef('d',c,l,w,i);
end

Note This loop replaces five separate wrcoef statements defining the details.
The variable D contains the five details.

% Avoid edge effects by suppressing edge values and plot.
tt = 1+100:length(s)-100;
subplot(6,1,1); plot(tt,s(tt),'r');
title('Electrical Signal and Details');
for i = 1:5, subplot(6,1,i+1); plot(tt,D(5-i+1,tt),'g'); end

2-44

Case Study: An Electrical Signal

Suggestions for Further Analysis
Let us now make some suggestions for possible further analysis starting from
the details of the decomposition at level 5 of 3 days.

Identify the Sensor Failure
Focus on the wavelet decomposition and try to identify the sensor failure
directly on the details D1, D2, and D3, and not the other ones. Try to identify
the other part of the noise.

Indication: see figure below.

2-45

2 Wavelets in Action: Examples and Case Studies

Suppress the Noise
Suppress measurement noise. Try by yourself and afterwards use the
de-noising tools.

Indication: study the approximations and compare two successive days, the
first without sensor failure and the second corrupted by failure (see figure
below).

2-46

Case Study: An Electrical Signal

Identify Patterns in the Details
The idea here is to identify a pattern in the details typical of relay-switched
water heaters.

Indication: the figure below gives an example of such a period. Focus on
details D2, D3, and D4 around abscissa 1350, 1383, and 1415 to detect abrupt
changes of the signal induced by automatic switches.

2-47

2 Wavelets in Action: Examples and Case Studies

Locate and Suppress Outlying Values
Suppress the outliers by setting the corresponding values of the details to 0.

Indication: The figure below gives two examples of outliers around t = 1193
and t = 1215. The effect produced on the details is clear when focusing on the
low levels. As far as outliers are concerned, D1 and D2 are synchronized with
s, while D3 shows a delayed effect.

2-48

Case Study: An Electrical Signal

Study Missing Data
Missing data have been crudely substituted (around observation 2870) by
the estimation of 30 minutes of sampled data and spline smoothing for the
intermediate time points. You can improve the interpolation by using an
approximation and portions of the details taken elsewhere, thus implementing
a sort of “graft.”

Indication: see the figure below focusing around time 2870, and use the small
variations part of D1 to detect the missing data.

2-49

2 Wavelets in Action: Examples and Case Studies

2-50

3

Using Wavelet Packets

• “About Wavelet Packet Analysis” on page 3-2

• “One-Dimensional Wavelet Packet Analysis” on page 3-7

• “Two-Dimensional Wavelet Packet Analysis” on page 3-21

• “Importing and Exporting from Graphical Tools” on page 3-29

3 Using Wavelet Packets

About Wavelet Packet Analysis
Wavelet Toolbox software contains graphical tools and command line
functions that let you

• Examine and explore characteristics of individual wavelet packets

• Perform wavelet packet analysis of one- and two-dimensional data

• Use wavelet packets to compress and remove noise from signals and images

This chapter takes you step-by-step through examples that teach you how
to use the Wavelet Packet 1-D and Wavelet Packet 2-D graphical tools.
The last section discusses how to transfer information from the graphical
tools into your disk, and back again.

Note All the graphical user interface tools described in this Chapter let you
import information from and export information to either disk or workspace.
For more information see “File Menu Options” on page A-10.

Because of the inherent complexity of packing and unpacking complete
wavelet packet decomposition tree structures, we recommend using the
Wavelet Packet 1-D andWavelet Packet 2-D graphical tools for performing
exploratory analyses.

The command line functions are also available and provide the same
capabilities. However, it is most efficient to use the command line only for
performing batch processing.

Note For more background on the wavelet packets, you can see the section
“Wavelet Packets” on page 6-143.

Some object-oriented programming features are used for wavelet packet
tree structures. For more detail, refer to Appendix B, “Object-Oriented
Programming”.

3-2

About Wavelet Packet Analysis

This chapter takes you through the features of one- and two-dimensional
wavelet packet analysis using the Wavelet Toolbox software. You’ll learn
how to

• Load a signal or image

• Perform a wavelet packet analysis of a signal or image

• Compress a signal

• Remove noise from a signal

• Compress an image

• Show statistics and histograms

The toolbox provides these functions for wavelet packet analysis. For more
information, see the reference pages. The reference entries for these functions
include examples showing how to perform wavelet packet analysis via the
command line.

Some more advanced examples mixing command line and GUI functions
can be found in the section “Simple Use of Objects Through Four Examples”
on page B-5.

Analysis-Decomposition Functions

Function Name Purpose

wpcoef Wavelet packet coefficients

wpdec and wpdec2 Full decomposition

wpsplt Decompose packet

Synthesis-Reconstruction Functions

Function Name Purpose

wprcoef Reconstruct coefficients

wprec and wprec2 Full reconstruction

wpjoin Recompose packet

3-3

3 Using Wavelet Packets

Decomposition Structure Utilities

Function Name Purpose

besttree Find best tree

bestlevt Find best level tree

entrupd Update wavelet packets entropy

get Get WPTREE object fields contents

read Read values in WPTREE object fields

wenergy Entropy

wp2wtree Extract wavelet tree from wavelet packet tree

wpcutree Cut wavelet packet tree

De-Noising and Compression

Function Name Purpose

ddencmp Default values for de-noising and compression

wpbmpen Penalized threshold for wavelet packet
de-noising

wpdencmp De-noising and compression using wavelet
packets

wpthcoef Wavelet packets coefficients thresholding

wthrmngr Threshold settings manager

In the wavelet packet framework, compression and de-noising ideas are
exactly the same as those developed in the wavelet framework. The only
difference is that wavelet packets offer a more complex and flexible analysis,
because in wavelet packet analysis, the details as well as the approximations
are split.

3-4

About Wavelet Packet Analysis

A single wavelet packet decomposition gives a lot of bases from which you can
look for the best representation with respect to a design objective. This can be
done by finding the “best tree” based on an entropy criterion.

De-noising and compression are interesting applications of wavelet packet
analysis. The wavelet packet de-noising or compression procedure involves
four steps:

1 Decomposition

For a given wavelet, compute the wavelet packet decomposition of signal
x at level N.

2 Computation of the best tree

For a given entropy, compute the optimal wavelet packet tree. Of course,
this step is optional. The graphical tools provide a Best Tree button for
making this computation quick and easy.

3 Thresholding of wavelet packet coefficients

For each packet (except for the approximation), select a threshold and
apply thresholding to coefficients.

The graphical tools automatically provide an initial threshold based on
balancing the amount of compression and retained energy. This threshold
is a reasonable first approximation for most cases. However, in general you
will have to refine your threshold by trial and error so as to optimize the
results to fit your particular analysis and design criteria.

3-5

3 Using Wavelet Packets

The tools facilitate experimentation with different thresholds, and make
it easy to alter the tradeoff between amount of compression and retained
signal energy.

4 Reconstruction

Compute wavelet packet reconstruction based on the original
approximation coefficients at level N and the modified coefficients.

In this example, we’ll show how you can use one-dimensional wavelet packet
analysis to compress and to de-noise a signal.

3-6

One-Dimensional Wavelet Packet Analysis

One-Dimensional Wavelet Packet Analysis
We now turn to the Wavelet Packet 1-D tool to analyze a synthetic signal
that is the sum of two linear chirps.

Starting the Wavelet Packet 1-D Tool.

1 From the MATLAB prompt, type wavemenu.

The Wavelet Toolbox Main Menu appears.

Click the Wavelet Packet 1-D menu item.

The tool appears on the desktop.

3-7

3 Using Wavelet Packets

Loading a Signal.

1 From the File menu, choose the Load Signal option.

2 When the Load Signal dialog box appears, select the demo
MAT-file sumlichr.mat, which should reside in the MATLAB folder
toolbox/wavelet/wavedemo. Click the OK button.

3-8

One-Dimensional Wavelet Packet Analysis

The sumlichr signal is loaded into theWavelet Packet 1-D tool.

Analyzing a Signal.

1 Make the appropriate settings for the analysis. Select the db2 wavelet,
level 4, entropy threshold, and for the threshold parameter type 1. Click
the Analyze button.

The available entropy types are listed below.

3-9

3 Using Wavelet Packets

Type Description

Shannon Nonnormalized entropy involving the logarithm
of the squared value of each signal sample — or,
more formally,

−∑ s si i
2 2log().

Threshold The number of samples for which the absolute
value of the signal exceeds a threshold ε.

Norm The concentration in l p norm with 1 ≤ p.

Log Energy The logarithm of “energy,” defined as the sum over
all samples:

log().si
2∑

SURE (Stein’s
Unbiased Risk
Estimate)

A threshold-based method in which the threshold
equals

2 2log log ()e n n()

where n is the number of samples in the signal.

User An entropy type criterion you define in a file.

For more information about the available entropy types, user-defined entropy,
and threshold parameters, see the wentropy reference page and “Choosing
the Optimal Decomposition” on page 6-158.

Note Many capabilities are available using the command area on the right of
theWavelet Packet 1-D window. Some of them are used in the sequel. For a
more complete description, see Appendix A, “Wavelet Packet Tool Features
(1-D and 2-D)” on page A-21.

3-10

One-Dimensional Wavelet Packet Analysis

Computing the Best Tree.

Because there are so many ways to reconstruct the original signal from the
wavelet packet decomposition tree, we select the best tree before attempting
to compress the signal.

1 Click the Best Tree button.

After a pause for computation, theWavelet Packet 1-D tool displays the
best tree. Use the top and bottom sliders to spread nodes apart and pan
over to particular areas of the tree, respectively.

Observe that, for this analysis, the best tree and the initial tree are almost
the same. One branch at the far right of the tree was eliminated.

3-11

3 Using Wavelet Packets

Compressing a Signal Using Wavelet Packets

Selecting a Threshold for Compression.

1 Click the Compress button.

The Wavelet Packet 1-D Compression window appears with an
approximate threshold value automatically selected.

The leftmost graph shows how the threshold (vertical yellow dotted line)
has been chosen automatically (1.482) to balance the number of zeros in the
compressed signal (blue curve that increases as the threshold increases)
with the amount of energy retained in the compressed signal (purple curve
that decreases as the threshold increases).

This threshold means that any signal element whose value is less than
1.482 will be set to zero when we perform the compression.

Threshold controls are located to the right (see the red box in the figure
above). Note that the automatic threshold of 1.482 results in a retained
energy of only 81.49%. This may cause unacceptable amounts of distortion,
especially in the peak values of the oscillating signal. Depending on your
design criteria, you may want to choose a threshold that retains more of
the original signal’s energy.

3-12

One-Dimensional Wavelet Packet Analysis

2 Adjust the threshold by typing 0.8938 in the text field opposite the
threshold slider, and then press the Enter key.

The value 0.8938 is a number that we have discovered through trial and
error yields more satisfactory results for this analysis.

After a pause, the Wavelet Packet 1-D Compression window displays
new information.

Note that, as we have reduced the threshold from 1.482 to 0.8938,

• The vertical yellow dotted line has shifted to the left.

• The retained energy has increased from 81.49% to 90.96%.

• The number of zeros (equivalent to the amount of compression) has
decreased from 81.55% to 75.28%.

3-13

3 Using Wavelet Packets

Compressing a Signal.

1 Click the Compress button.

TheWavelet Packet 1-D tool compresses the signal using the thresholding
criterion we selected.

The original (red) and compressed (yellow) signals are displayed
superimposed. Visual inspection suggests the compression quality is quite
good.

Looking more closely at the compressed signal, we can see that the number of
zeros in the wavelet packets representation of the compressed signal is about
75.3%, and the retained energy about 91%.

If you try to compress the same signal using wavelets with exactly the same
parameters, only 89% of the signal energy is retained, and only 59% of the
wavelet coefficients set to zero. This illustrates the superiority of wavelet
packets for performing compression, at least on certain signals.

You can demonstrate this to yourself by returning to the main Wavelet
Packet 1-D window, computing the wavelet tree, and then repeating the
compression.

3-14

One-Dimensional Wavelet Packet Analysis

De-Noising a Signal Using Wavelet Packets
We now use the Wavelet Packet 1-D tool to analyze a noisy chirp signal.
This analysis illustrates the use of Stein’s Unbiased Estimate of Risk (SURE)
as a principle for selecting a threshold to be used for de-noising.

This technique calls for setting the threshold T to

T n ne= ()2 2log log ()

where n is the length of the signal.

A more thorough discussion of the SURE criterion appears in “Choosing the
Optimal Decomposition” on page 6-158. For now, suffice it to say that this
method works well if your signal is normalized in such a way that the data
fit the model x(t) = f(t) + e(t), where e(t) is a Gaussian white noise with zero
mean and unit variance.

If you’ve already started theWavelet Packet 1-D tool and it is active on your
computer’s desktop, skip ahead to step 3.

Starting the Wavelet Packet 1-D Tool.

1 From the MATLAB prompt, type wavemenu.

The Wavelet Toolbox Main Menu appears.

3-15

3 Using Wavelet Packets

Click the Wavelet Packet 1-D menu item.

The tool appears on the desktop.

Loading a Signal

2 From the File menu, choose the Load Signal option.

3-16

One-Dimensional Wavelet Packet Analysis

3 When the Load Signal dialog box appears, select the demo
MAT-file noischir.mat, which should reside in the MATLAB folder
toolbox/wavelet/wavedemo. Click the OK button.

The noischir signal is loaded into the Wavelet Packet 1-D tool. Notice
that the signal’s length is 1024. This means we should set the SURE
criterion threshold equal to sqrt(2.*log(1024.*log2(1024))), or 4.2975.

Analyzing a Signal

3-17

3 Using Wavelet Packets

4 Make the appropriate settings for the analysis. Select the db2 wavelet,
level 4, entropy type sure, and threshold parameter 4.2975. Click the
Analyze button.

There is a pause while the wavelet packet analysis is computed.

Note Many capabilities are available using the command area on the right
of theWavelet Packet 1-D window. Some of them are used in the sequel.
For a more complete description, see “Wavelet Packet Tool Features (1-D
and 2-D)” on page A-21.

Computing the Best Tree and Performing De-Noising

5 Click the Best Tree button.

Computing the best tree makes the de-noising calculations more efficient.

3-18

One-Dimensional Wavelet Packet Analysis

6 Click the De-noise button. This brings up the Wavelet Packet 1-D
De-Noising window.

7 Click the De-noise button located at the center right side of the Wavelet
Packet 1-D De-Noising window.

The results of the de-noising operation are quite good, as can be seen by
looking at the thresholded coefficients. The frequency of the chirp signal
increases quadratically over time, and the thresholded coefficients essentially
capture the quadratic curve in the time-frequency plane.

3-19

3 Using Wavelet Packets

You can also use the wpdencmp function to perform wavelet packet de-noising
or compression from the command line.

3-20

Two-Dimensional Wavelet Packet Analysis

Two-Dimensional Wavelet Packet Analysis
In this section, we employ the Wavelet Packet 2-D tool to analyze and
compress an image of a fingerprint. This is a real-world problem: the Federal
Bureau of Investigation (FBI) maintains a large database of fingerprints
— about 30 million sets of them. The cost of storing all this data runs to
hundreds of millions of dollars.

“The FBI uses eight bits per pixel to define the shade of gray and stores 500
pixels per inch, which works out to about 700,000 pixels and 0.7 megabytes
per finger to store finger prints in electronic form.” (Wickerhauser, see the
reference [Wic94] p. 387, listed in “References” on page 6-168).

“The technique involves a two-dimensional DWT, uniform scalar quantization
(a process that truncates, or quantizes, the precision of the floating-point
DWT output) and Huffman entropy coding (i.e., encoding the quantized DWT
output with a minimal number of bits).” (Brislawn, see the reference [Bris95]
p. 1278, listed in “References” on page 6-168).

By turning to wavelets, the FBI has achieved a 15:1 compression ratio. In this
application, wavelet compression is better than the more traditional JPEG
compression, as it avoids small square artifacts and is particularly well suited
to detect discontinuities (lines) in the fingerprint.

Note that the international standard JPEG 2000 will include the wavelets
as a part of the compression and quantization process. This points out the
present strength of the wavelets.

Starting the Wavelet Packet 2-D Tool.

1 From the MATLAB prompt, type

wavemenu

The Wavelet Toolbox Main Menu appears.

3-21

3 Using Wavelet Packets

Click the Wavelet Packet 2-D menu item.

The tool appears on the desktop.

Loading an Image

3-22

Two-Dimensional Wavelet Packet Analysis

From the File menu, choose the Load Image option.

2 When the Load Image dialog box appears, select the demo
MAT-file detfingr.mat, which should reside in the MATLAB folder
toolbox/wavelet/wavedemo. Click the OK button.

The fingerprint image is loaded into theWavelet Packet 2-D tool.

Analyzing an Image

3-23

3 Using Wavelet Packets

3 Make the appropriate settings for the analysis. Select the haar wavelet,
level 3, and entropy type shannon. Click the Analyze button.

There is a pause while the wavelet packet analysis is computed.

Note Many capabilities are available using the command area on the right
of theWavelet Packet 2-D window. Some of them are used in the sequel.
For a more complete description, see “Wavelet Packet Tool Features (1-D
and 2-D)” on page A-21.

4 Click the Best Tree button to compute the best tree before compressing
the image.

3-24

Two-Dimensional Wavelet Packet Analysis

Compressing an Image Using Wavelet Packets

1 Click the Compress button to bring up the Wavelet Packet 2-D
Compression window. Select the Bal. sparsity-norm (sqrt) option from
the Select thresholding method menu.

Notice that the default threshold (7.125) provides about 64% compression
while retaining virtually all the energy of the original image. Depending on
your criteria, it may be worthwhile experimenting with more aggressive
thresholds to achieve a higher degree of compression. Recall that we are
not doing any quantization of the image, merely setting specific coefficients
to zero. This can be considered a precompression step in a broader
compression system.

2 Alter the threshold: type the number 30 in the text field opposite the
threshold slider located on the right side of the Wavelet Packet 2-D
Compression window. Then press the Enter key.

3-25

3 Using Wavelet Packets

Setting all wavelet packet coefficients whose value falls below 30 to zero
yields much better results. Note that the new threshold achieves around
92% of zeros, while still retaining nearly 98% of the image energy. Compare
this wavelet packet analysis to the wavelet analysis of the same image in
“Compressing Images” on page 1-27.

3 Click the Compress button to start the compression.

You can see the result obtained by wavelet packet coefficients thresholding
and image reconstruction. The visual recovery is correct, but not perfect.
The compressed image, shown side by side with the original, shows some
artifacts.

4 Click the Close button located at the bottom of theWavelet Packet 2-D
Compression window. Update the synthesized image by clicking Yes
when the dialog box appears.

Take this opportunity to try out your own compression strategy. Adjust the
threshold value, the entropy function, and the wavelet, and see if you can
obtain better results.

3-26

Two-Dimensional Wavelet Packet Analysis

Hint The bior6.8 wavelet is better suited to this analysis than is haar, and
can lead to a better compression ratio. When a biorthogonal wavelet is used,
then instead of “Retained energy” the information displayed is “Energy ratio.”
For more information, see “Compression Scores” on page 6-118.

Before concluding this analysis, it is worth turning our attention to the
“colored coefficients for terminal nodes plot” and considering the best tree
decomposition for this image.

This plot is shown in the lower right side of the Wavelet Packet 2-D tool.
The plot shows us which details have been decomposed and which have not.
Larger squares represent details that have not been broken down to as many
levels as smaller squares. Consider, for example, this level 2 decomposition
pattern:

3-27

3 Using Wavelet Packets

Looking at the pattern of small and large squares in the fingerprint analysis
shows that the best tree algorithm has apparently singled out the diagonal
details, often sparing these from further decomposition. Why is this?

If we consider the original image, we realize that much of its information is
concentrated in the sharp edges that constitute the fingerprint’s pattern.
Looking at these edges, we see that they are predominantly oriented
horizontally and vertically. This explains why the best tree algorithm has
“chosen” not to decompose the diagonal details — they do not provide very
much information.

3-28

Importing and Exporting from Graphical Tools

Importing and Exporting from Graphical Tools
The Wavelet Packet 1-D and Wavelet Packet 2-D tools let you import
information from and export information to your disk.

If you adhere to the proper file formats, you can

• Save decompositions as well as synthesized signals and images from the
wavelet packet graphical tools to disk

• Load signals, images, and one- and two-dimensional decompositions from
disk into the Wavelet Packet 1-D and Wavelet Packet 2-D graphical
tools

Saving Information to Disk
Using specific file formats, the graphical tools let you save synthesized signals
or images, as well as one- or two-dimensional wavelet packet decomposition
structures. This feature provides flexibility and allows you to combine
command line and graphical interface operations.

Saving Synthesized Signals
You can process a signal in the Wavelet Packet 1-D tool, and then save
the processed signal to a MAT-file.

For example, load the example analysis:

File > Example Analysis > db1 – depth: 2 – ent: shannon > sumsin

and perform a compression or de-noising operation on the original signal.
When you close the Wavelet Packet 1-D De-noising or Wavelet Packet
1-D Compression window, update the synthesized signal by clicking Yes
in the dialog box.

Then, from the Wavelet Packet 1-D tool, select the File > Save >
Synthesized Signal menu option.

A dialog box appears allowing you to select a folder and filename for the
MAT-file. For this example, choose the name synthsig.

3-29

3 Using Wavelet Packets

To load the signal into your workspace, simply type

load synthsig
whos

Name Size Bytes Class

synthsig 1x1000 8000 double array

valTHR 1x1 8 double array

wname 1x3 6 char array

The synthesized signal is given by synthsig. In addition, the parameters of
the de-noising or compression process are given by the wavelet name (wname)
and the global threshold (valTHR).

valTHR

valTHR =
1.9961

Saving Synthesized Images
You can process an image in theWavelet Packet 2-D tool, and then save the
processed image to a MAT-file (with extension mat or other).

For example, load the example analysis:

File > Example Analysis > db1 – depth: 1 – ent: shannon > woman

and perform a compression on the original image. When you close the
Wavelet Packet 2-D Compression window, update the synthesized image
by clicking Yes in the dialog box that appears.

Then, from the Wavelet 2-D tool, select the File > Save > Synthesized
Image menu option.

A dialog box appears allowing you to select a folder and filename for the
MAT-file. For this example, choose the name wpsymage.

3-30

Importing and Exporting from Graphical Tools

To load the image into your workspace, simply type

load wpsymage
whos

Name Size Bytes Class

X 256x256 524288 double array

map 255x3 6120 double array

valTHR 1x1 8 double array

wname 1x3 6 char array

The synthesized image is given by X. The variable map contains the associated
colormap. In addition, the parameters of the de-noising or compression process
are given by the wavelet name (wname) and the global threshold (valTHR).

Saving One-Dimensional Decomposition Structures
The Wavelet Packet 1-D tool lets you save an entire wavelet packet
decomposition tree and related data to your disk. The toolbox creates a
MAT-file in the current folder with a name you choose, followed by the
extension wp1 (wavelet packet 1-D).

Open theWavelet Packet 1-D tool and load the example analysis:

File > Example Analysis > db1 – depth: 2 – ent: shannon > sumsin

To save the data from this analysis, use the menu option File > Save
Decomposition.

A dialog box appears that lets you specify a folder and file name for storing
the decomposition data. Type the name wpdecex1d.

After saving the decomposition data to the file wpdecex1d.wp1, load the
variables into your workspace.

load wpdecex1d.wp1 -mat
whos

3-31

3 Using Wavelet Packets

Name Size Bytes Class

data_name 1x6 12 char array

tree_struct 1x1 11176 wptree object

valTHR 0x0 0 double array

The variable tree_struct contains the wavelet packet tree structure. The
variable data_name contains the data name and valTHR contains the global
threshold, which is currently empty since the synthesized signal does not
exist.

Saving Two-Dimensional Decomposition Structures
The file format, variables, and conventions are exactly the same as in the
one-dimensional case except for the extension, which is wp2 (wavelet packet
2-D). The variables saved are the same as with the one-dimensional case, with
the addition of the colormap matrix map:

Name Size Bytes Class

data_name 1x5 10 char array

map 255x3 6120 double array

tree_struct 1x1 527400 wptree object

valTHR 1x1 8 double array

Save options are also available when performing de-noising or compression
inside the Wavelet Packet 1-D and Wavelet Packet 2-D tools.

In the Wavelet Packet De-Noising windows, you can save the de-noised signal
or image and the decomposition. The same holds true for the Wavelet Packet
Compression windows.

This way, you can save directly many different trials from inside the
De-Noising and Compression windows without going back to the main
Wavelet Packet windows during a fine-tuning process.

3-32

Importing and Exporting from Graphical Tools

Note When saving a synthesized signal (1-D), a synthesized image (2-D)
or a decomposition to a MAT-file, the extension of this file is free. The mat
extension is not necessary.

Loading Information into the Graphical Tools
You can load signals, images, or one- and two-dimensional wavelet packet
decompositions into the graphical interface tools. The information you load
may have been previously exported from the graphical interface, and then
manipulated in the workspace, or it may have been information you generated
initially from the command line.

In either case, you must observe the strict file formats and data structures
used by the graphical tools, or else errors will result when you try to load
information.

Loading Signals
To load a signal you’ve constructed in your MATLAB workspace into the
Wavelet Packet 1-D tool, save the signal in a MAT-file (with extension mat
or other).

For instance, suppose you’ve designed a signal called warma and want to
analyze it in the Wavelet Packet 1-D tool.

save warma warma

The workspace variable warma must be a vector.

sizwarma = size(warma)

sizwarma =
1 1000

To load this signal into the Wavelet Packet 1-D tool, use the menu option
File > Load Signal.

A dialog box appears that lets you select the appropriate MAT-file to be loaded.

3-33

3 Using Wavelet Packets

Note The first one-dimensional variable encountered in the file is considered
the signal. Variables are inspected in alphabetical order.

Loading Images
This toolbox supports only indexed images. An indexed image is a matrix
containing only integers from 1 to n, where n is the number of colors in the
image.

This image may optionally be accompanied by a n-by-3 matrix called map. This
is the colormap associated with the image. When MATLAB displays such an
image, it uses the values of the matrix to look up the desired color in this
colormap. If the colormap is not given, the Wavelet Packet 2-D graphical
tool uses a monotonic colormap with max(max(X)) min(min(X))+1 colors.

To load an image you’ve constructed in your MATLAB workspace into the
Wavelet Packet 2-D tool, save the image (and optionally, the variable map)
in a MAT-file (with extension mat or other).

For instance, suppose you’ve created an image called brain and want to
analyze it in the Wavelet Packet 2-D tool. Type

X = brain;
map = pink(256);
save myfile X map

To load this image into the Wavelet Packet 2-D tool, use the menu option
File > Load Image.

A dialog box appears that lets you select the appropriate MAT-file to be loaded.

Note The first two-dimensional variable encountered in the file (except the
variable map, which is reserved for the colormap) is considered the image.
Variables are inspected in alphabetical order.

3-34

Importing and Exporting from Graphical Tools

Caution The graphical tools allow you to load an image that does not contain
integers from 1 to n. The computations will be correct since they act directly on
the matrix, but the display of the image will be strange. The values less than
1 will be evaluated as 1, the values greater than n will be evaluated as n, and
a real value within the interval [1,n] will be evaluated as the closest integer.

Note that the coefficients, approximations, and details produced by wavelet
packets decomposition are not indexed image matrices. To display these
images in a suitable way, theWavelet Packet 2-D tool follows these rules:

• Reconstructed approximations are displayed using the colormap map. The
same holds for the result of the reconstruction of selected nodes.

• The coefficients and the reconstructed details are displayed using the
colormap map applied to a rescaled version of the matrices.

Loading Wavelet Packet Decomposition Structures
You can load one- and two-dimensional wavelet packet decompositions into
the graphical tools providing you have previously saved the decomposition
data in a MAT-file of the appropriate format.

While it is possible to edit data originally created using the graphical tools
and then exported, you must be careful about doing so. Wavelet packet data
structures are complex, and the graphical tools do not do any consistency
checking. This can lead to errors if you try to load improperly formatted data.

One-dimensional data file contains the following variables:

Variable Status Description

tree_struct Required Object specifying the tree structure

data_name Optional String specifying the name of the
decomposition

valTHR Optional Global threshold (can be empty if neither
compression nor de-noising has been done)

3-35

3 Using Wavelet Packets

These variables must be saved in a MAT-file (with extension wp1 or other).

Two-dimensional data file contains the following variables:

Variable Status Description

tree_struct Required Object specifying the tree structure

data_name Optional String specifying the name of the
decomposition

map Optional Image map

valTHR Optional Global threshold (can be empty if neither
compression nor de-noising has been done)

These variables must be saved in a MAT-file (with extension wp2 or other).

To load the properly formatted data, use the menu option File > Load
Decomposition Structure from the appropriate tool, and then select the
desired MAT-file from the dialog box that appears.

The Wavelet Packet 1-D or 2-D graphical tool then automatically updates
its display to show the new analysis.

Note When loading a signal (1-D), an image (2-D), or a decomposition (1-D
or 2-D) from a MAT-file, the extension of this file is free. The mat extension
is not necessary.

3-36

4

1-D Continuous Wavelet
Analysis Using Discrete
Fourier Transforms (DFT)

• “DFT-Based Continuous Wavelet Analysis Using Command Line” on page
4-2

• “DFT-Based Continuous Wavelet Analysis Using Graphical User Interface”
on page 4-13

4 1-D Continuous Wavelet Analysis Using Discrete Fourier Transforms (DFT)

DFT-Based Continuous Wavelet Analysis Using Command
Line

In this section...

“CWT of Sum of Disjoint Sinusoids” on page 4-2

“Approximate Scale-Frequency Conversions” on page 4-6

“Signal Reconstruction from CWT Coefficients” on page 4-9

“Signal Approximation with Modified CWT Coefficients” on page 4-10

To implement a DFT-based continuous wavelet analysis in the MATLAB
command window, use cwtft and icwtft.

For the mathematical basis of the DFT-based continuous wavelet analysis
and synthesis see:

• “Continuous Wavelet Transform via the Inverse Discrete Fourier
Transform”

• “Inverse Continuous Wavelet Transform”

CWT of Sum of Disjoint Sinusoids
The signal is a sum of two disjoint sinusoids. The sampling frequency is
1023 Hz. The total signal duration is 1 second. The frequencies of the two
sine waves are 4 and 8 Hz. The 4-Hz sine wave has support on the initial
1/2 second of the 1-second interval. The 8-Hz sine wave has support on the
final 1/2 second.

N = 1024;
t = linspace(0,1,N);
dt =1/(N-1);
Y = sin(8*pi*t).*(t<=0.5) + sin(16*pi*t).*(t>0.5);

Obtain the continuous wavelet transform (CWT) using the default analytic
Morlet wavelet, and plot the results.

sig = {Y,dt};
cwtS1 = cwtft(sig,'plot');

4-2

DFT-Based Continuous Wavelet Analysis Using Command Line

The figure shows a plot of the original signal. The CWT moduli, real and
imaginary parts of the CWT coefficients, and the CWT coefficient arguments
(phase angles) also appear as plots.

You can display the reconstructed signal by enabling the radio button at the
bottom-left corner of the plot. Enabling the radio button superimposes the
reconstructed signal on the original signal in the top-left corner of the figure.
The relative maximum and quadratic (L2 norm) errors appear under the plot.

4-3

4 1-D Continuous Wavelet Analysis Using Discrete Fourier Transforms (DFT)

You can customize your continuous wavelet analysis by providing additional
inputs to cwtft. In the following example, specify the analyzing wavelet as
the Paul wavelet of order 8. Specify the initial scale, the spacing between
scales, and the number of scales. By default, the scale vector is logarithmic
to the base 2.

% smallest scale, spacing between scales, number of scales
dt = 1/1023;
s0 = 2*dt; ds = 0.5; NbSc = 20;
% scale vector is
% scales = s0*2.^((0:NbSc-1)*ds);
wname = 'paul';

4-4

DFT-Based Continuous Wavelet Analysis Using Command Line

SIG = {Y,dt};
% Create SCA input as cell array
SCA = {s0,ds,NbSc};
% Specify wavelet and parameters
WAV = {wname,8};

% Compute and plot the CWT
cwtS2 = cwtft(SIG,'scales',SCA,'wavelet',WAV,'plot');

The oscillations at 4 and 8 Hz are clearly visible as alternating positive and
negative real and imaginary parts. The 4-Hz oscillation occurs at a longer
scale than the 8-Hz oscillation. In the plot of the CWT moduli, you see the
transition from the 4-Hz (longer scale) sinusoid to the 8-Hz sinusoid (shorter
scale) around 0.5 seconds.

4-5

4 1-D Continuous Wavelet Analysis Using Discrete Fourier Transforms (DFT)

Approximate Scale-Frequency Conversions
There is not a direct correspondence between Fourier wavelength and scale.
However, you can find conversion factors for select wavelets that yield an
approximate scale-frequency correspondence. You can find these factors for
wavelets supported by cwtft listed on the reference page.

This example shows you how to change the scale axis to an approximate
frequency axis for analysis. Use the sum of disjoint sinusoids as the input
signal. Set the initial scale to 6*dt, the scale increment to 0.15, and the
number of scales to 50. Use the Fourier factor for the Morlet wavelet to convert
the scale vector to an approximate frequency vector in hertz. Plot the result.

figure;
s0 = 6*dt; ds = 0.15; NbSc = 50;
wname = 'morl';
SCA = {s0,ds,NbSc};
cwtsig = cwtft({Y,dt},'scales',SCA,'wavelet',wname);
MorletFourierFactor = 4*pi/(6+sqrt(2+6^2));
Scales = cwtsig.scales.*MorletFourierFactor;
Freq = 1./Scales;
imagesc(t,[],abs(cwtsig.cfs));
indices = get(gca,'ytick');
set(gca,'yticklabel',Freq(indices));
xlabel('Time'); ylabel('Hz');
title('Time-Frequency Analysis with CWT');

4-6

DFT-Based Continuous Wavelet Analysis Using Command Line

You can see the signal contains significant energy at approximately 4 Hz over
the first 1/2 second. In the final 1/2 second interval, the predominant signal
energy transitions higher in frequency to approximately 8 Hz.

Repeat the above example using the Paul analyzing wavelet with order, m,
equal to 8. Use a contour plot of the real part of the CWT to visualize the sine
waves at 4 and 8-Hz. The real part exhibits oscillations in the sign of the
wavelet coefficients at those frequencies.

s0 = 6*dt; ds = 0.15; NbSc = 50;
m = 8;
% scale vector is
% scales = s0*2.^((0:NbSc-1)*ds);
wname = 'paul';

4-7

4 1-D Continuous Wavelet Analysis Using Discrete Fourier Transforms (DFT)

SIG = {Y,dt};
% Create SCA input as cell array
SCA = {s0,ds,NbSc};
% Specify wavelet and parameters
WAV = {wname,m};
cwtPaul = cwtft(SIG,'scales',SCA,'wavelet',WAV);
scales = cwtPaul.scales;
PaulFourierFactor = 4*pi/(2*m+1);
Freq = 1./(PaulFourierFactor.*scales);
contour(t,Freq,real(cwtPaul.cfs));
xlabel('Time'); ylabel('Hz'); colorbar;
title('Real Part of CWT using Paul Wavelet (m=8)');
axis([0 1 1 15]); grid on;

4-8

DFT-Based Continuous Wavelet Analysis Using Command Line

Signal Reconstruction from CWT Coefficients
You can use the critically sampled (decimated) and oversampled
(nondecimated) discrete wavelet transforms (DWT) to achieve perfect
reconstruction of the input signal from the wavelet coefficients. To obtain
a time and scale-dependent approximation to a signal, you can use a
possibly-modified subset of the decimated or undecimated DWT coefficients.

The inversion of the CWT is not as straightforward. The simplest CWT
inversion utilizes the single integral formula due to Morlet, which employs a
Dirac delta function as the synthesizing wavelet. See “Inverse Continuous
Wavelet Transform” for a brief mathematical motivation. icwtft and
icwtlin both implement the single integral formula. Because of necessary
approximations in the implementation of the single integral inverse CWT,
you cannot expect to obtain perfect reconstruction. However, you can use the
inverse CWT to obtain useful position and scale-dependent approximations to
the input signal.

Implement the inverse CWT with logarithmically-spaced scales.

N = 1024;
t = linspace(0,1,N);
dt =1/(N-1);
Y = sin(8*pi*t).*(t<=0.5) + sin(16*pi*t).*(t>0.5);
dt = 1/1023;
s0 = 2*dt; ds = 0.5; NbSc = 20;
% scale vector is
% scales = s0*2.^((0:NbSc-1)*ds);
wname = 'paul';
SIG = {Y,dt};
% Create SCA input as cell array
SCA = {s0,ds,NbSc};
% Specify wavelet and parameters
WAV = {wname,8};
cwtS2 = cwtft(SIG,'scales',SCA,'wavelet',WAV);
YR1 = icwtft(cwtS2,'plot','signal',SIG);
norm(Y-YR1,2)

Enable the radio button in the left corner of the figure to plot the reconstructed
signal.

4-9

4 1-D Continuous Wavelet Analysis Using Discrete Fourier Transforms (DFT)

Signal Approximation with Modified CWT Coefficients
Obtain the CWT of a noisy Doppler (frequency-modulated) signal using the
analytic Morlet wavelet. Reconstruct an approximation by selecting a subset
of the CWT coefficients. By eliminating the smallest scales, you obtain a
lowpass approximation to the signal. The lowpass approximation produces a
smooth approximation to the lower-frequency features of the noisy Doppler
signal. The high-frequency (small scale) features at the beginning of the
signal are lost.

% Define the signal
load noisdopp; Y = noisdopp;
N = length(Y);

% Define parameters before analysis
dt = 1;

4-10

DFT-Based Continuous Wavelet Analysis Using Command Line

s0 = 2*dt; ds = 0.4875; NbSc = 20;
wname = 'morl';
SIG = {Y,dt};
SCA = {s0,ds,NbSc};
WAV = {wname,[]};

% Compute CWT analysis
cwtS4 = cwtft(SIG,'scales',SCA,'wavelet',WAV);

% Thresholding step building the new structure
cwtS5 = cwtS4;
newCFS = zeros(size(cwtS4.cfs));
newCFS(11:end,:) = cwtS4.cfs(11:end,:);
cwtS5.cfs = newCFS;

% Reconstruction from the modified structure
YRDen = icwtft(cwtS5,'signal',SIG);
plot(Y,'k-.');
hold on;
plot(YRDen,'r','linewidth',3); axis tight;
legend('Original Signal', 'Selective inverse CWT');
title('Signal approximation based on a subset of CWT coefficients');

4-11

4 1-D Continuous Wavelet Analysis Using Discrete Fourier Transforms (DFT)

4-12

DFT-Based Continuous Wavelet Analysis Using Graphical User Interface

DFT-Based Continuous Wavelet Analysis Using Graphical
User Interface

You can use the Continuous Wavelet 1-D (Using FFT) tool to analyze the
same signals examined in “DFT-Based Continuous Wavelet Analysis Using
Command Line” on page 4-2.

1 At the MATLAB command prompt, enter

wavemenu

2 Click the Continuous Wavelet 1-D (Using FFT) menu item.

3 Choose the File > Load Data option. When the Pick a file dialog appears,
select noisdopp.mat from the toolbox/wavelet/wavedemo folder.

4-13

4 1-D Continuous Wavelet Analysis Using Discrete Fourier Transforms (DFT)

4 Using the menu default parameters, click Analyze.

4-14

DFT-Based Continuous Wavelet Analysis Using Graphical User Interface

5 Reconstruct the signal based on all the default dyadic scales. Click Scales
Selection.

4-15

4 1-D Continuous Wavelet Analysis Using Discrete Fourier Transforms (DFT)

Select all scales by clicking All. Click Synthesize.

4-16

DFT-Based Continuous Wavelet Analysis Using Graphical User Interface

In the top left, the synthesized signal plot is superimposed on the original
signal. The relative maximum and L2 errors are displayed under the plot.

The single integral CWT inversion does not produce perfect reconstruction,
but the relative errors using the default logarithmically–spaced scales
are small.

6 Obtain a signal approximation from selected scales.

Click None in the Selection of Scales panel to undo the scale selection.
Then, select only scale indices greater than 10 and reconstruct an
approximation to the original signal. Hold the Ctrl key while selecting
scale indices 11–21. The scale indices correspond to the following physical
scales.

dt = 1;
s0 = 2*dt;
ds = 0.4875;
nb = 21;
physical_scales = s0*pow.^((0:nb-1)*ds);

7 Click Synthesize.

The reconstructed signal from scale indices 11–21 is a lowpass
approximation to the noisy Doppler signal.

4-17

4 1-D Continuous Wavelet Analysis Using Discrete Fourier Transforms (DFT)

8 Analyze using linear scales. In the Scales drop-down menu in the upper
right, select Linear default and click Analyze.

4-18

DFT-Based Continuous Wavelet Analysis Using Graphical User Interface

Note The other options under Scales include Dyadic default and
Manual.

If you select Manual, a Define Scales button appears. Click Define
Scales to set the parameters for your scale vector.

Manual Selection of CWT Coefficients
Select coefficients manually by graphically selecting the CWT coefficients.
Reconstruct the signal from the selected coefficients. ClickManual Selection
of Coefficients. The Select the Coefficients Manually panel appears with
a single box containing all the CWT coefficient moduli.

4-19

4 1-D Continuous Wavelet Analysis Using Discrete Fourier Transforms (DFT)

You can change the CWT coefficient view to Angle, Real, or Imaginary.

To select a subset of coefficients, draw a box by left-clicking and dragging the
mouse. When you release the mouse button, a semi-transparent box with a
green border is superimposed on the plot.

You can place multiple boxes on the same plot. To synthesize a signal based
on the selected coefficients, click Synthesize.

4-20

DFT-Based Continuous Wavelet Analysis Using Graphical User Interface

To select, unselect, or delete a box, right-click in the box. A context menu
appears that allows you to select, unselect, or delete the box. After you
select the coefficients within the box, the border of the box displays in green.
When the coefficients within the box are not selected, the border of the box
displays in red.

You can move a box by clicking the left mouse button inside the box while
simultaneously pressing the Shift key. The border of the box changes to
yellow, and you can drag the box to the desired location. You must keep the
Shift key pressed while you are moving the box.

Quit the manual selection mode by clicking the Close button.

In the Show synthesized signals from panel on the right, you can turn
the plot of your synthesized signal on and off by checking and unchecking
Manual selection.

4-21

4 1-D Continuous Wavelet Analysis Using Discrete Fourier Transforms (DFT)

Using the File > Save > Synthesized signal menu, you can save the
available synthesized signals.

Using the File > Save > Decomposition menu, you can save the wavelet
analysis as a MAT file.

4-22

5

Generating MATLAB Code
from Wavelet Toolbox GUI

• “Generating MATLAB Code for 1-D Decimated Wavelet Denoising and
Compression” on page 5-2

• “Generating MATLAB Code for 2-D Decimated Wavelet Denoising and
Compression” on page 5-13

• “Generating MATLAB Code for 1-D Stationary Wavelet Denoising” on
page 5-20

• “Generating MATLAB Code for 2-D Stationary Wavelet Denoising” on
page 5-27

• “Generating MATLAB Code for 1-D Wavelet Packet Denoising and
Compression” on page 5-31

• “Generating MATLAB Code for 2-D Wavelet Packet Denoising and
Compression” on page 5-35

5 Generating MATLAB® Code from Wavelet Toolbox™ GUI

Generating MATLAB Code for 1-D Decimated Wavelet
Denoising and Compression

Wavelet 1-D Denoising
You can generate MATLAB code to reproduce GUI-based 1-D wavelet
denoising at the command line. You must perform this operation in the
Wavelet 1-D - - De-noising tool. You must first denoise your signal before
you can enable the File > Generate Matlab Code (Denoising Process)
operation.

The generated MATLAB code does not include the calculation of the
thresholds using thselect or wbmpen.

Denoise Doppler Signal

1 Enter wavemenu at the MATLAB command prompt.

5-2

Generating MATLAB® Code for 1-D Decimated Wavelet Denoising and Compression

2 Select Wavelet 1-D in the Wavelet Toolbox Main Menu.

3 Load the noisy Doppler example analysis. Select File > Example Analysis
> Noisy Signals - Constant Noise Variance > with sym4 at level 5 - -
-> Noisy Doppler.

4 Click De-noise.

5-3

5 Generating MATLAB® Code from Wavelet Toolbox™ GUI

5 In the Select thresholding method drop-down menu, select the default
Fixed form threshold. Use the default soft option. Set the thresholds by
level as follows:

• level 5 — 3.5

• level 4 — 3.72

• level 3 — 3.0

• level 2 — 2.0

• level 1 — 3.0

5-4

Generating MATLAB® Code for 1-D Decimated Wavelet Denoising and Compression

Click De-noise.

6 Generate the MATLAB code by selecting File > Generate Matlab Code
(Denoising Process).

The operation generates the following MATLAB code.

function sigDEN = func_denoise_dw1d(SIG)
% FUNC_DENOISE_DW1-D Saved Denoising Process.
% SIG: vector of data
% -------------------
% sigDEN: vector of denoised data

% Analysis parameters.

5-5

5 Generating MATLAB® Code from Wavelet Toolbox™ GUI

%---------------------
wname = 'sym4';
level = 5;

% Denoising parameters.
%----------------------
% meth = 'sqtwolog';
% scal_or_alfa = one;
sorh = 's'; % Specified soft or hard thresholding
thrParams = [...

3.00000000 ; ...
2.00000000 ; ...
3.00000000 ; ...
3.72000000 ; ...
3.50000000 ...
];

% Denoise using CMDDENOISE.
%--------------------------
sigDEN = cmddenoise(SIG,wname,level,sorh,NaN,thrParams);

7 Save func_denoise_dw1d.m in a folder on the MATLAB search path.
Execute the following code.

load noisdopp;
SIG = noisdopp;
% func_denoise_dw1d.m is generated code
sigDEN = func_denoise_dw1d(SIG);

8 Export the denoised signal from the GUI by selecting File > Save >
De-noised Signal.

5-6

Generating MATLAB® Code for 1-D Decimated Wavelet Denoising and Compression

Save the denoised signal as denoiseddoppler.mat in a folder on the
MATLAB search path. Load denoiseddoppler.mat in the MATLAB
workspace. Compare denoiseddoppler with your command line result.

load denoiseddoppler;
plot(sigDEN,'k'); axis tight;
hold on;
plot(denoiseddoppler,'r');
legend('Command Line','GUI','Location','SouthEast');

5-7

5 Generating MATLAB® Code from Wavelet Toolbox™ GUI

Interval Dependent 1-D Wavelet Denoising

1 Enter wavemenu at the MATLAB command prompt.

2 Select Wavelet 1-D.

3 Select File > Load > Signal, and load leleccum.mat from the
matlab/toolbox/wavelet/wavedemo folder.

4 Select the sym4 wavelet, and set Level equal to 3. Click Analyze.

5-8

Generating MATLAB® Code for 1-D Decimated Wavelet Denoising and Compression

When you inspect the original signal and the finest-scale wavelet
coefficients, you see that the noise variance is not constant. In this situation,
interval-dependent thresholding is useful. To implement interval-dependent
denoising:

1 Click De-noise.

2 Under Select thresholding method, select Rigorous SURE.

3 Select Int. dependent threshold settings.

4 In the Interval Dependent Threshold Settings for Wavelet 1-D tool,
choose Generate Default Intervals. Three intervals are created. Click
Propagate to propagate the intervals to all levels.

5 Click Close, and answer Yes to Update Thresholds?.

6 Select De-noise.

5-9

5 Generating MATLAB® Code from Wavelet Toolbox™ GUI

7 Generate the MATLAB code by selecting File > Generate Matlab Code
(Denoising Process).

The operation generates the following MATLAB code.

function sigDEN = func_denoise_dw1d(SIG)

% FUNC_DENOISE_DW1D Saved Denoising Process.

% SIG: vector of data

% -------------------

% sigDEN: vector of denoised data

% Analysis parameters.

%---------------------

wname = 'sym4';

level = 3;

% Denoising parameters.

%----------------------

% meth = 'rigrsure';

% scal_or_alfa = one;

sorh = 's'; % Specified soft or hard thresholding

thrSettings = {...

[...

1.000000000000000 2410.000000000000000 5.659608351110114; ...

2410.000000000000000 3425.000000000000000 19.721391195242880; ...

3425.000000000000000 4320.000000000000000 4.907947952868359; ...

]; ...

[...

1.000000000000000 2410.000000000000000 5.659608351110114; ...

2410.000000000000000 3425.000000000000000 5.659608351110114; ...

3425.000000000000000 4320.000000000000000 5.659608351110114; ...

]; ...

[...

1.000000000000000 2410.000000000000000 5.659608351110114; ...

2410.000000000000000 3425.000000000000000 5.659608351110114; ...

3425.000000000000000 4320.000000000000000 5.659608351110114; ...

]; ...

};

5-10

Generating MATLAB® Code for 1-D Decimated Wavelet Denoising and Compression

% Denoise using CMDDENOISE.

%--------------------------

sigDEN = cmddenoise(SIG,wname,level,sorh,NaN,thrSettings);

8 To avoid confusion with the MATLAB code generated in “Denoise Doppler
Signal ” on page 5-2, change the function definition line. Change the
function definition to:

function sigDEN = func_IDdenoise_dw1d(SIG)

Save the MATLAB program as func_IDdenoise_dw1d.m in a folder on
the MATLAB search path.

9 Save the denoised signal as denoisedleleccum.mat with File > Save >
De-noised Signal in a folder on the MATLAB search path.

Execute the following code.

load leleccum;
load denoisedleleccum;
sigDEN = func_IDdenoise_dw1d(leleccum);
plot(sigDEN,'k');
hold on;
plot(denoisedleleccum,'r');
legend('Command Line','GUI');
norm(sigDEN-denoisedleleccum,2)

5-11

5 Generating MATLAB® Code from Wavelet Toolbox™ GUI

5-12

Generating MATLAB® Code for 2-D Decimated Wavelet Denoising and Compression

Generating MATLAB Code for 2-D Decimated Wavelet
Denoising and Compression

In this section...

“2-D Decimated Discrete Wavelet Transform Denoising” on page 5-13

“2-D Decimated Discrete Wavelet Transform Compression” on page 5-17

2-D Decimated Discrete Wavelet Transform Denoising
You can generate MATLAB code to reproduce GUI-based 2-D decimated
wavelet denoising at the command line. You must perform this operation in
the Wavelet 2-D – –De-noising tool. You must first denoise your image
before you can enable the File > Generate Matlab Code (Denoising
Process) operation.

1 Enter wavemenu at the MATLAB command prompt.

2 Select Wavelet 2-D.

3 Load the Noisy SinSin example indexed image. Using the default
biorthogonal wavelet and level 3 decomposition, click De-noise.

4 In the Select thresholding method drop-down menu, select the default
Fixed form threshold and soft options. Use the default Unscaled white
noise. Set the thresholds by level for the horizontal, diagonal, and vertical
coefficients as follows:

• Level 3 — 4

• Level 2 — 4

• Level 1 — 8

Enter these thresholds for the horizontal, diagonal, and vertical coefficients.

5 Select De-noise.

6 Generate the MATLAB code with File > Generate Matlab Code
(Denoising Process).

5-13

5 Generating MATLAB® Code from Wavelet Toolbox™ GUI

The operation generates the following MATLAB code.

function [XDEN,cfsDEN,dimCFS] = func_denoise_dw2d(X)

% FUNC_DENOISE_DW2-D Saved Denoising Process.

% X: matrix of data

% -----------------

% XDEN: matrix of denoised data

% cfsDEN: decomposition vector (see WAVEDEC2)

% dimCFS: corresponding bookkeeping matrix

% Analysis parameters.

%---------------------

wname = 'bior6.8';

5-14

Generating MATLAB® Code for 2-D Decimated Wavelet Denoising and Compression

level = 3;

% Denoising parameters.

%-----------------------

% meth = 'sqtwolog';

% scal_OR_alfa = one;

sorh = 's'; % Specified soft or hard thresholding

thrParams = [...

8.00000000 4.00000000 4.00000000 ; ...

8.00000000 4.00000000 4.00000000 ; ...

8.00000000 4.00000000 4.00000000 ...

];

roundFLAG = true;

% Denoise using CMDDENOISE.

%--------------------------

[coefs,sizes] = wavedec2(X,level,wname);

[XDEN,cfsDEN,dimCFS] = wdencmp('lvd',coefs,sizes, ...

wname,level,thrParams,sorh);

if roundFLAG , XDEN = round(XDEN); end

if isequal(class(X),'uint8') , XDEN = uint8(XDEN); end

7 Save func_denoise_dw2d.m in a folder on the MATLAB search path, and
execute the following code.

load noissi2d.mat;
noissi2d = X;
[XDEN,cfsDEN,dimCFS] = func_denoise_dw2d(noissi2d);

8 Save your denoised image in a folder on the MATLAB search path as
denoisedsin.mat.

5-15

5 Generating MATLAB® Code from Wavelet Toolbox™ GUI

Load the denoised image in the MATLAB workspace. Compare the result
with your generated code.

load denoisedsin.mat;
% denoised image loaded in variable X
subplot(121);
imagesc(X); title('Image denoised in the GUI');
subplot(122);
imagesc(XDEN); title('Image denoised with generated code');
% Norm of the difference is zero
norm(XDEN-X,2)

5-16

Generating MATLAB® Code for 2-D Decimated Wavelet Denoising and Compression

2-D Decimated Discrete Wavelet Transform
Compression
You can generate MATLAB code to reproduce GUI-based 2-D decimated
wavelet compression at the command line. You must perform this operation
in theWavelet 2-D --Compression tool. You must first compress your image
before you can enable the File > Generate Matlab Code (Compression
Process) operation.

1 Enter wavemenu at the MATLAB command prompt.

2 Select Wavelet 2-D.

3 Select File > Load > Image and load the detfingr.mat indexed image
from the matlab/toolbox/wavelet/wavedemo folder. When the Loading
an Image dialog appears, select No to load the grayscale image.

4 Select the bior3.5 wavelet, and set Level to 3.

5 Click Analyze, then click Compress.

6 Using the default Global thresholding, set Select thresholding
method to Bal.sparsity-norm (sqrt).

7 Click Compress.

5-17

5 Generating MATLAB® Code from Wavelet Toolbox™ GUI

8 File > Generate Code (Compression Process) generates the following
code.

function [XCMP,cfsCMP,dimCFS] = func_compress_dw2d(X)
% FUNC_COMPRESS_DW2D Saved Compression Process.
% X: matrix of data
% -----------------
% XCMP: matrix of compressed data
% cfsCMP: decomposition vector (see WAVEDEC2)
% dimCFS: corresponding bookkeeping matrix

% Analysis parameters.
%---------------------
wname = 'bior3.5';
level = 3;

% Compression parameters.
%------------------------
% meth = 'sqrtbal_sn';
sorh = 'h'; % Specified soft or hard thresholding
thrSettings = 10.064453124999996;
roundFLAG = true;

% Compression using WDENCMP.
%--------------------------
[coefs,sizes] = wavedec2(X,level,wname);
[XCMP,cfsCMP,dimCFS] = wdencmp('gbl',coefs,sizes, ...

wname,level,thrSettings,sorh,1);
if roundFLAG , XCMP = round(XCMP); end
if isequal(class(X),'uint8') , XCMP = uint8(XCMP); end

9 Save the MATLAB program, func_compress_dw2d.m, in a folder on the
MATLAB search path. Execute the following code at the command line.

load detfingr.mat;
% Image data is in X
[XCMP,cfsCMP,dimCFS] = func_compress_dw2d(X);

10 Save the compressed image from theWavelet 2-D - - Compression tool in
a folder on the MATLAB search path. Use File > Save > Compressed

5-18

Generating MATLAB® Code for 2-D Decimated Wavelet Denoising and Compression

Image, and name the file compressed_fingerprint.mat. Execute the
following code.

load compressed_fingerprint.mat;
% Image data is in X
norm(XCMP-X,2)

5-19

5 Generating MATLAB® Code from Wavelet Toolbox™ GUI

Generating MATLAB Code for 1-D Stationary Wavelet
Denoising

You can generate MATLAB code to reproduce GUI-based 1-D nondecimated
(stationary) wavelet denoising at the command line. You must perform this
operation in the Stationary Wavelet Transform Denoising 1-D tool. You
must first denoise your signal before you can enable the File > Generate
Matlab Code (Denoising Process) operation.

1-D Stationary Wavelet Transform Denoising

1 Enter wavemenu at the MATLAB command prompt.

5-20

Generating MATLAB® Code for 1-D Stationary Wavelet Denoising

2 Select SWT Denoising 1-D.

3 Load the Noisy bumps example. Select File > Example Analysis > Noisy
Signals > with sym4 at level 5 - - -> Noisy bumps

4 Set the thresholds as follows:

• Level 1 — 3.5

• Level 2 — 3.4

• Level 3 — 2.3

• Level 4 — 5.3

• Level 5 — 2.2

5-21

5 Generating MATLAB® Code from Wavelet Toolbox™ GUI

Click De-noise.

5 Generate the MATLAB code with File > Generate Matlab Code
(Denoising Process).

5-22

Generating MATLAB® Code for 1-D Stationary Wavelet Denoising

The operation generates the following MATLAB code.

function [sigDEN,wDEC] = func_denoise_sw1d(SIG)

% FUNC_DENOISE_SW1-D Saved Denoising Process.

% SIG: vector of data

% -------------------

% sigDEN: vector of denoised data

% wDEC: stationary wavelet decomposition

% Analysis parameters.

%---------------------

wname = 'sym4';

level = 5;

5-23

5 Generating MATLAB® Code from Wavelet Toolbox™ GUI

% Denoising parameters.

%----------------------

% meth = 'sqtwolog';

% scal_OR_alfa = one;

sorh = 's'; % Specified soft or hard thresholding

thrParams = {...

[...

1.00000000 1024.00000000 3.50000000; ...

]; ...

[...

1.00000000 1024.00000000 3.40000000; ...

]; ...

[...

1.00000000 1024.00000000 2.30000000; ...

]; ...

[...

1.00000000 1024.00000000 5.29965570; ...

]; ...

[...

1.00000000 1024.00000000 2.20000000; ...

]; ...

};

% Decompose using SWT.

%---------------------

wDEC = swt(SIG,level,wname);

% Denoise.

%---------

len = length(SIG);

for k = 1:level

thr_par = thrParams{k};

if ~isempty(thr_par)

NB_int = size(thr_par,1);

x = [thr_par(:,1) ; thr_par(NB_int,2)];

x = round(x);

x(x<1) = 1;

x(x>len) = len;

thr = thr_par(:,3);

for j = 1:NB_int

5-24

Generating MATLAB® Code for 1-D Stationary Wavelet Denoising

if j==1 , d_beg = 0; else d_beg = 1; end

j_beg = x(j)+d_beg;

j_end = x(j+1);

j_ind = (j_beg:j_end);

wDEC(k,j_ind) = wthresh(wDEC(k,j_ind),sorh,thr(j));

end

end

end

% Reconstruct the denoise signal using ISWT.

%---

sigDEN = iswt(wDEC,wname);

6 Save func_denoise_sw1d.m in a folder on the MATLAB search path.
Execute the following code.

load noisbump.mat;
[sigDEN,wDEC] = func_denoise_sw1d(noisbump);

7 Select File > Save De-noised Signal, and save the denoised signal as
denoisedbumps.mat in a folder on the MATLAB search path.

5-25

5 Generating MATLAB® Code from Wavelet Toolbox™ GUI

Execute the following code.

load denoisedbump.mat;
plot(sigDEN,'k'); axis tight;
hold on;
plot(denoisedbump,'r');
% norm of the difference
norm(sigDEN-denoisedbump,2)

5-26

Generating MATLAB® Code for 2-D Stationary Wavelet Denoising

Generating MATLAB Code for 2-D Stationary Wavelet
Denoising

You can generate MATLAB code to reproduce GUI-based 2-D stationary
wavelet denoising at the command line. You can generate code to denoise both
indexed and truecolor images. You must perform this operation in the SWT
Denoising 2-D tool. You must first denoise your image before you can enable
the File > Generate Matlab Code (Denoising Process) operation.

2-D Stationary Wavelet Transform Denoising

1 Enter wavemenu at the MATLAB command prompt.

5-27

5 Generating MATLAB® Code from Wavelet Toolbox™ GUI

2 Select SWT Denoising 2-D.

3 Select File > Load Image, and load noiswom.mat from the
matlab/toolbox/wavelet/wavedemo folder.

Choose No when prompted to use the grayscale image.

4 Select the db4 wavelet, and set the Level to 5.

5 Click Decompose Image.

6 Use the default soft thresholding method with Fixed form threshold
and Unscaled white noise for Select noise structure.

7 Set the following thresholds for the horizontal, diagonal, and vertical
details. Ensure that you set the thresholds for the three detail coefficient
types.

• Level 1 — 5

• Level 2 — 4

• Level 3 — 3

• Level 4 — 2

• Level 5 — 1

8 Click De-noise.

9 Select File > Generate Matlab Code (Denoising Process).

The operation generates the following MATLAB code.

function [XDEN,wDEC] = func_denoise_sw2d(X)
% FUNC_DENOISE_SW2D Saved Denoising Process.
% X: matrix of data
% -----------------
% XDEN: matrix of denoised data
% wDEC: stationary wavelet decomposition

% Analysis parameters.
%---------------------
wname = 'db2';

5-28

Generating MATLAB® Code for 2-D Stationary Wavelet Denoising

level = 5;

% Denoising parameters.
%-----------------------
% meth = 'sqtwolog';
% scal_OR_alfa = one;
sorh = 's'; % Specified soft or hard thresholding
thrSettings = [...

1.0000 2.0000 3.0000 4.0000 5.0000 ; ...
1.0000 2.0000 3.0000 4.0000 5.0000 ; ...
1.0000 2.0000 3.0000 4.0000 5.0000 ...
];

roundFLAG = false;

% Decompose using SWT2.
%---------------------
wDEC = swt2(X,level,wname);

% Denoise.
%---------
permDir = [1 3 2];
for j = 1:level

for kk=1:3
ind = (permDir(kk)-1)*level+j;
thr = thrSettings(kk,j);
wDEC(:,:,ind) = wthresh(wDEC(:,:,ind),sorh,thr);

end
end

% Reconstruct the denoise signal using ISWT2.
%---
XDEN = iswt2(wDEC,wname);
if roundFLAG , XDEN = round(XDEN); end

10 Save this MATLAB program as func_denoise_sw2d.m in a folder on the
MATLAB search path.

Execute the following code.

load noiswom

5-29

5 Generating MATLAB® Code from Wavelet Toolbox™ GUI

[XDEN,wDEC] = func_denoise_sw2d(X);

11 Save the denoised image as denoisedwom.mat in a folder on the MATLAB
search path.

12 Execute the following code.

load denoisedwom
% Compare the GUI and command line results
imagesc(X); title('GUI Operation'); colormap(gray);
figure;
imagesc(XDEN); title('Command Line Operation');
colormap(gray);
norm(XDEN-X,2)

5-30

Generating MATLAB® Code for 1-D Wavelet Packet Denoising and Compression

Generating MATLAB Code for 1-D Wavelet Packet
Denoising and Compression

1-D Wavelet Packet Denoising
You can generate MATLAB code to reproduce GUI–based 1-D wavelet
packet denoising at the command line. You must perform this operation in
the Wavelet Packet 1-D - - De-noising tool. You must first denoise your
signal before you can enable the File > Generate Matlab Code (Denoising
Process) operation.

1 Enter wavemenu at the MATLAB command prompt.

2 Select Wavelet Packet 1-D.

3 Select File > Load Signal and load noisbump.mat from the
matlab/toolbox/wavelet/wavedemo folder.

5-31

5 Generating MATLAB® Code from Wavelet Toolbox™ GUI

4 Select the db4 wavelet, and set the Level to 4. Accept the default value
Shannon for Entropy.

5 Click Analyze.

6 Click De-noise.

7 Under Select thresholding method, accept the default Fixed form thr.
(unscaled wn) with the soft radio button enabled.

Set Select Global Threshold to 2.75.

8 Click De-noise.

9 Select File > Generate Matlab Code (Denoising Process)

The operation generates the following MATLAB code.

function [sigDEN,wptDEN] = func_denoise_wp1d(SIG)

% FUNC_DENOISE_WP1D Saved Denoising Process.

% SIG: vector of data

% -------------------

% sigDEN: vector of denoised data

% wptDEN: wavelet packet decomposition (wptree object)

% Analysis parameters.

%---------------------

Wav_Nam = 'db4';

Lev_Anal = 4;

Ent_Nam = 'shannon';

Ent_Par = 0;

% Denoising parameters.

%----------------------

% meth = 'sqtwologuwn';

sorh = 's'; % Specified soft or hard thresholding

thrSettings = {sorh,'nobest',2.750000000000000,1};

% Decompose using WPDEC.

%----------------------

5-32

Generating MATLAB® Code for 1-D Wavelet Packet Denoising and Compression

wpt = wpdec(SIG,Lev_Anal,Wav_Nam,Ent_Nam,Ent_Par);

% Nodes to merge.

%-----------------

n2m = [];

for j = 1:length(n2m)

wpt = wpjoin(wpt,n2m(j));

end

% Denoise using WPDENCMP.

%------------------------

[sigDEN,wptDEN] = wpdencmp(wpt,thrSettings{:});

Save func_denoise_wp1d.m in a folder on the MATLAB search path.

Save the denoised signal from the Wavelet Packet 1-D - - De-noising tool
as wp_denoisedbump.mat in a folder on the MATLAB search path.

Execute the following code.

5-33

5 Generating MATLAB® Code from Wavelet Toolbox™ GUI

load noisbump;
[sigDEN,wptDEN] = func_denoise_wp1d(noisbump);
load wp_denoisedbump;
plot(sigDEN); title('Denoised Signal');
axis([1 1024 min(sigDEN)-1 max(sigDEN+1)]);
norm(sigDEN-wp_denoisedbump,2)

5-34

Generating MATLAB® Code for 2-D Wavelet Packet Denoising and Compression

Generating MATLAB Code for 2-D Wavelet Packet
Denoising and Compression

2-D Wavelet Packet Compression
You can generate MATLAB code to reproduce GUI–based 2-D wavelet packet
compression at the command line. You must perform this operation in the
Wavelet 2-D - - Compression tool. You must first compress your image
before you can enable the File > Generate Matlab Code (Compression
Process) operation.

1 Enter wavemenu at the MATLAB command prompt.

2 Select Wavelet Packet 2-D.

3 Select File > Load > Example Analysis > Indexed Images, and load
the tire.

5-35

5 Generating MATLAB® Code from Wavelet Toolbox™ GUI

4 Using the default parameter settings, click Best Tree.

5-36

Generating MATLAB® Code for 2-D Wavelet Packet Denoising and Compression

5 Click Compress.

6 Set Select thresholding method to Bal.sparsity-norm (sqrt).

7 Click Compress.

5-37

5 Generating MATLAB® Code from Wavelet Toolbox™ GUI

8 File > Generate Code (Compression Process) generates the following
code.

function [XCMP,wptCMP] = func_compress_wp2d(X)

% FUNC_COMPRESS_WP2D Saved Compression Process.

% X: matrix of data

% -----------------

% XCMP: matrix of compressed data

% wptCMP: wavelet packet decomposition (wptree object)

% Analysis parameters.

%---------------------

Wav_Nam = 'haar';

Lev_Anal = 2;

5-38

Generating MATLAB® Code for 2-D Wavelet Packet Denoising and Compression

Ent_Nam = 'shannon';

Ent_Par = 0;

% Compression parameters.

%-----------------------

% meth = 'sqrtbal_sn';

sorh = 'h'; % Specified soft or hard thresholding

thrSettings = {sorh,'nobest',16.499999999999886,1};

roundFLAG = true;

% Decompose using WPDEC2.

%-----------------------

wpt = wpdec2(X,Lev_Anal,Wav_Nam,Ent_Nam,Ent_Par);

% Nodes to merge.

%-----------------

n2m = [2 3];

for j = 1:length(n2m)

wpt = wpjoin(wpt,n2m(j));

end

% Compression using WPDENCMP.

%----------------------------

[XCMP,wptCMP] = wpdencmp(wpt,thrSettings{:});

if roundFLAG , XCMP = round(XCMP); end

if isequal(class(X),'uint8') , XCMP = uint8(XCMP); end

9 Save the generated MATLAB code as func_compress_wp2d.m in a folder on
the MATLAB search path, and execute the following code.

load tire;
[XCMP,wptCMP] = func_compress_wp2d(X);

10 Save the compressed image from theWavelet 2-D -- Compression tool as
compressed_tire.mat in a folder on the MATLAB search path. Use File >
Save > Compressed Image to save the compressed image.

11 Execute the following code to compare the command line and GUI result.

load compressed_tire.mat;
norm(XCMP-X,2)

5-39

5 Generating MATLAB® Code from Wavelet Toolbox™ GUI

5-40

6

Advanced Concepts

This chapter presents a more advanced treatment of wavelet methods, and
focuses on real wavelets, except in the two sections dedicated to wavelet
families.

• “Mathematical Conventions” on page 6-2

• “General Concepts” on page 6-5

• “Fast Wavelet Transform (FWT) Algorithm” on page 6-19

• “Dealing with Border Distortion” on page 6-35

• “Discrete Stationary Wavelet Transform (SWT)” on page 6-45

• “Lifting Method for Constructing Wavelets” on page 6-52

• “Frequently Asked Questions” on page 6-62

• “Wavelet Families: Additional Discussion” on page 6-73

• “Wavelet Applications: More Detail” on page 6-97

• “Wavelet Packets” on page 6-143

• “References” on page 6-168

6 Advanced Concepts

Mathematical Conventions
This chapter and the reference pages use certain mathematical conventions.

General Notation Interpretation

a j Zj= ∈2 ,
Dyadic scale. j is the level, 1/α or 2–j is
the resolution.

b ka k Z= ∈, Dyadic translation

t Continuous time

k or n
Discrete time

(i,j)
Pixel

s
Signal or image. The signal is a function
defined on R or Z; the image is defined
on R2 or Z2.

f̂

Fourier transform of the function f or the
sequence f

Continuous Time

L2(R)
Set of signals of finite energy

s x dx
R

2()∫ Energy of the signal s

s s s x s x dx
R

, () ()′ = ′∫ Scalar product of signals s and s′

L2(R2)
Set of images of finite energy

6-2

Mathematical Conventions

General Notation Interpretation

s x y dxdy
RR

2∫∫ (,) Energy of the image s

s s s x y s x y dxdy
RR

, (,) (,)′ = ′∫∫ Scalar product of images s and s′

Discrete Time

l2(Z)
Set of signals of finite energy

s n
n Z

2()∈∑
Energy of the signal s

s s s n s n
n Z

, () ()′ = ′
∈∑ Scalar product of signals s and s′

l2(Z2)
Set of images of finite energy

s n m
m Zn Z

2
∈∈ ∑∑ (,) Energy of the image s

s s s n m s n m
m Zn Z

, (,) (,)′ = ′
∈∈ ∑∑ Scalar product of images s and s′

Wavelet Notation Interpretation

Aj
j-level approximation or approximation
at level j

Dj j-level detail or detail at level j

6-3

6 Advanced Concepts

Wavelet Notation Interpretation

φ Scaling function

ψ Wavelet

1

a

x b
a

ψ −⎛
⎝⎜

⎞
⎠⎟

Family associated with the
one-dimensional wavelet, indexed
by a > 0 and b R

1

1 2

1 1

1

2 2

2
1 2

2

a a

x b
a

x b
a

x x x Rψ
− −⎛

⎝
⎜

⎞

⎠
⎟ = ∈, , (,)

Family associated with the
two-dimensional wavelet, indexed
by a1 > 0, a2 > 0, b1 R, b2 R

φj,k(x) = 2
–j/2φ(2–jx–k), j Z,k Z

Family associated with the
one-dimensional scaling function
for dyadic scales a = 2j,b = ka; it should be
noted that φ = φ0,0.

ψj,k(x) = 2
–j/2ψ(2–jx–k), j Z,k Z

Family associated with the
one-dimensional ψ for dyadic scales
a = 2j,b = ka; it should be noted that ψ
= ψ0,0.

(hk), k Z
Scaling filter associated with a wavelet

(gk), k Z
Wavelet filter associated with a wavelet

6-4

General Concepts

General Concepts
This section presents a brief overview of wavelet concepts, focusing mainly on
the orthogonal wavelet case. It includes the following sections:

• “Wavelets: A New Tool for Signal Analysis” on page 6-5

• “Wavelet Decomposition: A Hierarchical Organization” on page 6-5

• “Finer and Coarser Resolutions” on page 6-6

• “Wavelet Shapes” on page 6-6

• “Wavelets and Associated Families” on page 6-7

• “Wavelet Transforms: Continuous and Discrete” on page 6-12

• “Local and Global Analysis” on page 6-14

• “Synthesis: An Inverse Transform” on page 6-15

• “Details and Approximations” on page 6-15

Wavelets: A New Tool for Signal Analysis
Wavelet analysis consists of decomposing a signal or an image into a
hierarchical set of approximations and details. The levels in the hierarchy
often correspond to those in a dyadic scale.

From the signal analyst’s point of view, wavelet analysis is a decomposition of
the signal on a family of analyzing signals, which is usually an orthogonal
function method. From an algorithmic point of view, wavelet analysis offers a
harmonious compromise between decomposition and smoothing techniques.

Wavelet Decomposition: A Hierarchical Organization
Unlike conventional techniques, wavelet decomposition produces a family of
hierarchically organized decompositions. The selection of a suitable level for
the hierarchy will depend on the signal and experience. Often the level is
chosen based on a desired low-pass cutoff frequency.

At each level j, we build the j-level approximation Aj, or approximation at
level j, and a deviation signal called the j-level detail Dj, or detail at level j.
We can consider the original signal as the approximation at level 0, denoted

6-5

6 Advanced Concepts

by A0. The words approximation and detail are justified by the fact that
A1 is an approximation of A0 taking into account the low frequencies of A0,
whereas the detail D1 corresponds to the high frequency correction. Among
the figures presented in “Reconstructing Approximations and Details” in the
Wavelet Toolbox Getting Started Guide, one of them graphically represents
this hierarchical decomposition.

One way of understanding this decomposition consists of using an optical
comparison. Successive images A1, A2, A3 of a given object are built. We use
the same type of photographic devices, but with increasingly poor resolution.
The images are successive approximations; one detail is the discrepancy
between two successive images. Image A2 is, therefore, the sum of image
A4 and intermediate details D4, D3:

A2 = A3 + D3 = A4 + D4 + D3

Finer and Coarser Resolutions
The organizing parameter, the scale a, is related to level j by a = 2j. If we
define resolution as 1/a, then the resolution increases as the scale decreases.
The greater the resolution, the smaller and finer are the details that can
be accessed.

j 10 9 ... 2 1 0 –1 –2

Scale 1024 512 ... 4 2 1 1/2 1/4

Resolution 1/210 1/29 ... 1/4 1/2 1 2 4

From a technical point of view, the size of the revealed details for any j is
proportional to the size of the domain in which the wavelet or analyzing

function of the variable x, ψ x
a

⎛
⎝⎜

⎞
⎠⎟
is not too close to 0.

Wavelet Shapes
One-dimensional analysis is based on one scaling function φ and one wavelet
ψ. Two-dimensional analysis (on a square or rectangular grid) is based on
one scaling function φ(x1, x2) and three wavelets.

6-6

General Concepts

The following figure shows φ and ψ for each wavelet, except the Morlet
wavelet and the Mexican hat, for which φ does not exist. All the functions
decay quickly to zero. The Haar wavelet is the only noncontinuous function
with three points of discontinuity (0, 0.5, 1). The ψ functions oscillate more
than associated φ functions. coif2 exhibits some angular points; db6 and sym6
are quite smooth. The Morlet and Mexican hat wavelets are symmetrical.

Various One-Dimensional Wavelets

Wavelets and Associated Families
In the one-dimensional context, we distinguish the wavelet ψ from the
associated function φ, called the scaling function. Some properties of ψ and
φ are

6-7

6 Advanced Concepts

• The integral of ψ is zero, (())ψ x dx =∫ 0 , and ψ is used to define the details.

• The integral of φ is 1, (())ϕ∫ =x dx 1 , and φ is used to define approximations.

The usual two-dimensional wavelets are defined as tensor products of
one-dimensional wavelets: φ(x,y) = φ(x)φ(y) is the scaling function and ψ1(x,y)
= φ(x)ψ(y),ψ2(x,y) = ψ(x)φ(y),ψ3(x,y) = ψ(x)ψ(y) are the three wavelets.

The following figure shows the four functions associated with the 2-D coif2
wavelet.

Two-Dimensional coif2 Wavelet

To each of these functions, we associate its doubly indexed family, which is
used to:

6-8

General Concepts

• Move the basic shape from one side to the other, translating it to position
b (see the following figure).

• Keep the shape while changing the one-dimensional time scale α (α > 0)
(see Time Scaled One-Dimensional Wavelet on page 6-10).

So a wavelet family member has to be thought of as a function located at
a position b, and having a scale a.

In one-dimensional situations, the family of translated and scaled wavelets
associated with ψ is expressed as follows.

Translation Change of Scale
Translation and Change of
Scale

ψ ()x b− 1

a

x
a

ψ ⎛
⎝⎜

⎞
⎠⎟

1

a

x b
a

ψ −⎛
⎝⎜

⎞
⎠⎟

Translated Wavelets

6-9

6 Advanced Concepts

Time Scaled One-Dimensional Wavelet

In a two-dimensional context, we have the translation by vector (b1,b2) and a
change of scale of parameter (a1,a2) .

Translation and change of scale become:

1

1 2

1 1

1

2 2

2
1 2

2

a a

x b
a

x b
a

x x x Rψ
− −⎛

⎝
⎜

⎞

⎠
⎟ = ∈, (,) where

In most cases, we will limit our choice of a and b values by using only the
following discrete set (coming back to the one-dimensional context):

(,) : ,j k Z a b k kaj j∈ = = =2 2 2

Let us define:

(,) : (), (),
/

,
/j k Z x k x kj k

j j
j k

j j∈ = − = −− − − −2 2 22 2 2 2ψ ψ ϕ ϕ

We now have a hierarchical organization similar to the organization of a
decomposition; this is represented in the example of Wavelets Organization
on page 6-11. Let k = 0 and leave the translations aside for the moment. The
functions associated with j = 0, 1, 2, 3 for φ (expressed as φj,0) and with j =

6-10

General Concepts

1, 2, 3 for ψ (expressed as ψj,0) are displayed in the following figure for the
db3 wavelet.

Wavelets Organization

6-11

6 Advanced Concepts

In the preceding figure, the four-level decomposition is shown, progressing
from the top to the bottom. We find φ0,0; then 2

1/2φ1,0, 2
1/2ψ1,0; then 2φ2,0, 2ψ2,0;

then 23/2φ3,0, 2
3/2ψ3,0. The wavelet is db3.

Wavelet Transforms: Continuous and Discrete
The wavelet transform of a signal s is the family C(a,b), which depends on two
indices a and b. The set to which a and b belong is given below in the table.
The studies focus on two transforms:

• Continuous transform

• Discrete transform

From an intuitive point of view, the wavelet decomposition consists of
calculating a “resemblance index” between the signal and the wavelet located
at position b and of scale a. If the index is large, the resemblance is strong,
otherwise it is slight. The indexes C(a,b) are called coefficients.

We define the coefficients in the following table. We have two types of analysis
at our disposal.

Continuous Time Signal
Continuous Analysis

Continuous Time Signal
Discrete Analysis

C a b s t
a

t b
a

dt
R

(,) ()= −⎛
⎝⎜

⎞
⎠⎟∫ 1 ψ C a b s t

a

t b
a

dt
R

(,) ()= −⎛
⎝⎜

⎞
⎠⎟∫ 1 ψ

a R b R∈ −{ } ∈+ 0 , a b k j k Zj j= = ∈2 2 2, ,(,)

Next we will illustrate the differences between the two transforms, for
the analysis of a fractal signal (see the figure Continuous Versus Discrete
Transform on page 6-13).

6-12

General Concepts

Continuous Versus Discrete Transform

Using a redundant representation close to the so-called continuous analysis,
instead of a nonredundant discrete time-scale representation, can be useful
for analysis purposes. The nonredundant representation is associated with an
orthonormal basis, whereas the redundant representation uses much more
scale and position values than a basis. For a classical fractal signal, the
redundant methods are quite accurate.

• Graphic representation of discrete analysis: (in the middle of the
figure Continuous Versus Discrete Transform on page 6-13) time is on the
abscissa and on the ordinate the scale a is dyadic: 21, 22, 23, 24, and 25

(from the bottom to the top), levels are 1, 2, 3, 4, and 5. Each coefficient of
level k is repeated 2k times.

• Graphic representation of continuous analysis: (at the bottom of the
figure Continuous Versus Discrete Transform on page 6-13) time is on the
abscissa and on the ordinate the scale varies almost continuously between
21 and 25 by step 1 (from the bottom to the top). Keep in mind that when a
scale is small, only small details are analyzed, as in a geographical map.

6-13

6 Advanced Concepts

Local and Global Analysis
A small scale value permits us to perform a local analysis; a large scale value
is used for a global analysis. Combining local and global is a useful feature of
the method. Let us be a bit more precise about the local part and glance at
the frequency domain counterpart.

Imagine that the analyzing function φ or ψ is zero outside of a domain U,
which is contained in a disk of radius ρ: ψ(u) = 0, ∀u∉ U. The wavelet ψ is
localized. The signal s and the function ψ are then compared in the disk,
taking into account only the t values in the disk. The signal values, which are
located outside of the domain U, do not influence the value of the coefficient

s t t dt s t t dt s t t dt
R UR

() () () () () ()ψ ψ ψ and we get ∫ ∫∫ =

The same argument holds when ψ is translated to position b and the
corresponding coefficient analyzes s around b. So this analysis is local.

The wavelets having a compact support are used in local analysis. This is the
case for Haar and Daubechies wavelets, for example. The wavelets whose
values are considered as very small outside a domain U can be used with
caution, as if they were in fact actually zero outside U. Not every wavelet has
a compact support. This is the case, for instance, of the Meyer wavelet.

The previous localization is temporal, and is useful in analyzing a temporal
signal (or spatial signal if analyzing an image). The good spectral domain
localization is a second type of a useful property. A result (linked to the
Heisenberg uncertainty principle) links the dispersion of the signal f and the

dispersion of its Fourier transform f̂ , and therefore of the dispersion of ψ

and ψ̂ . The product of these dispersions is always greater than a constant c
(which does not depend on the signal, but only on the dimension of the space).
So it is impossible to reduce arbitrarily both time and frequency localization.

In the Fourier and spectral analysis, the basic function is f(x) = exp(iωx).
This function is not a time localized function. The support is R. Its Fourier

transform f̂ is a generalized function concentrated at point ω.

6-14

General Concepts

The function f is very poorly localized in time, but f̂ is perfectly localized
in frequency. The wavelets generate an interesting “compromise” on the
supports, and this compromise differs from that of complex exponentials,
sine, or cosine.

Synthesis: An Inverse Transform
In order to be efficient and useful, a method designed for analysis also has to
be able to perform synthesis. The wavelet method achieves this.

The analysis starts from s and results in the coefficients C(a,b). The synthesis
starts from the coefficients C(a,b) and reconstructs s. Synthesis is the
reciprocal operation of analysis.

For signals of finite energy, there are two formulas to perform the inverse
wavelet transform:

• Continuous synthesis:

s t
K

C a b
a

t b
a

da db

aRR
() (,)= −⎛

⎝⎜
⎞
⎠⎟∫∫ +

1 1
2

ψ
ψ

where Kψ is a constant depending on ψ.

• Discrete synthesis:

s t C j k tj k
k Zj Z

() (,) ().,=
∈∈
∑∑ ψ

Of course, the previous formulas need some hypotheses on the ψ function.
More precisely, see “What Functions Are Candidates to Be a Wavelet?” on
page 6-65 for the continuous synthesis formula and “Why Does Such an
Algorithm Exist?” on page 6-28 for the discrete one.

Details and Approximations
The equations for continuous and discrete synthesis are of considerable
interest and can be read in order to define the detail at level j:

6-15

6 Advanced Concepts

1 Let us fix j and sum on k. A detail Dj is nothing more than the function

D t C j k tj j k
k Z

() (,) (),=
∈
∑ ψ

2 Now, let us sum on j. The signal is the sum of all the details:

s DJj Z
= ∈∑

The details have just been defined. Take a reference level called J. There are
two sorts of details. Those associated with indices j ≤ J correspond to the
scales α = 2j ≤ 2J which are the fine details. The others, which correspond to
j > J, are the coarser details.

We group these latter details into

A DJ j
j J

=
>
∑

which defines what is called an approximation of the signal s. We have just
created the details and an approximation. They are connected. The equality

s A DJ j
j J

= +
≤
∑

signifies that s is the sum of its approximation AJ and of its fine details.
From the previous formula, it is obvious that the approximations are related
to one another by

AJ–1 = AJ + DJ

For an orthogonal analysis, in which the ψj,k is an orthonormal family,

• AJ is orthogonal to DJ, DJ–1, DJ–2, ...

• s is the sum of the two orthogonal signals: AJ and Dj
j J≤
∑

6-16

General Concepts

• Dj ⊥ Dk for j ≠ k

• AJ is an approximation of s. The quality (in energy) of the approximation
of s by AJ is

qual
A

s
J

J=
2

2

•

qual qual
D

s
qualJ J

J
J− = + ≥1

2

2

The following table contains definitions of details and approximations.

Definition of the detail at level j D t C j k tj j kk Z
() (,) (),= ∈∑ ψ

The signal is the sum of its details s DJj Z
= ∈∑

The approximation at level J s A DJ jj J
= + >∑

Link between AJ–1 and AJ AJ–1 = AJ + DJ

Several decompositions s A DJ jj J
= + >∑

From a graphical point of view, when analyzing a signal, it is always valuable
to represent the different signals (s, Aj, Dj) and coefficients (C(j,k)).

6-17

6 Advanced Concepts

Let us consider Approximations, Details, and Coefficients on page 6-18. On
the left side, s is the signal; a5, a4, a3, a2, and a1 are the approximations at
levels 5, 4, 3, 2, and 1. The best approximation is a1; the next one is a2, and
so on. Noise oscillations are exhibited in a1, whereas a5 is smoother.

On the right side, cfs represents the coefficients (for more information, see
“Wavelet Transforms: Continuous and Discrete” on page 6-12), s is the signal,
and d5, d4, d3, d2, and d1 are the details at levels 5, 4, 3, 2, and 1.

The different signals that are presented exist in the same time grid. We can
consider that the t index of detail D4(t) identifies the same temporal instant as
that of the approximation A5(t) and that of the signal s(t). This identity is of
considerable practical interest in understanding the composition of the signal,
even if the wavelet sometimes introduces dephasing.

Approximations, Details, and Coefficients

6-18

Fast Wavelet Transform (FWT) Algorithm

Fast Wavelet Transform (FWT) Algorithm
In 1988, Mallat produced a fast wavelet decomposition and reconstruction
algorithm [Mal89]. The Mallat algorithm for discrete wavelet transform
(DWT) is, in fact, a classical scheme in the signal processing community,
known as a two-channel subband coder using conjugate quadrature filters
or quadrature mirror filters (QMFs).

• The decomposition algorithm starts with signal s, next calculates the
coordinates of A1 and D1, and then those of A2 and D2, and so on.

• The reconstruction algorithm called the inverse discrete wavelet transform
(IDWT) starts from the coordinates of AJ and DJ, next calculates the
coordinates of AJ–1, and then using the coordinates of AJ–1 and DJ–1
calculates those of AJ–2, and so on.

This section addresses the following topics:

• “Filters Used to Calculate the DWT and IDWT” on page 6-19

• “Algorithms” on page 6-23

• “Why Does Such an Algorithm Exist?” on page 6-28

• “One-Dimensional Wavelet Capabilities” on page 6-32

• “Two-Dimensional Wavelet Capabilities” on page 6-33

Filters Used to Calculate the DWT and IDWT
For an orthogonal wavelet, in the multiresolution framework (see [Dau92] in
Chapter 3, “Using Wavelet Packets”), we start with the scaling function φ and
the wavelet function ψ. One of the fundamental relations is the twin-scale
relation (dilation equation or refinement equation):

1
2 2
φ φx

w x nn
n Z

⎛
⎝⎜

⎞
⎠⎟
= −

∈
∑ ()

All the filters used in DWT and IDWT are intimately related to the sequence

(wn)n Z

6-19

6 Advanced Concepts

Clearly if φ is compactly supported, the sequence (wn) is finite and can
be viewed as a filter. The filter W, which is called the scaling filter
(nonnormalized), is

• Finite Impulse Response (FIR)

• Of length 2N

• Of sum 1

• Of norm

1

2

• A low-pass filter

For example, for the db3 scaling filter,

load db3
db3

db3 =
0.2352 0.5706 0.3252 -0.0955 -0.0604 0.0249

sum(db3)
ans =

1.0000

norm(db3)
ans =

0.7071

From filter W, we define four FIR filters, of length 2N and of norm 1,
organized as follows.

Filters Low-Pass High-Pass

Decomposition Lo_D Hi_D

Reconstruction Lo_R Hi_R

The four filters are computed using the following scheme.

6-20

Fast Wavelet Transform (FWT) Algorithm

where qmf is such that Hi_R and Lo_R are quadrature mirror filters (i.e.,
Hi_R(k) = (–1) k Lo_R(2N + 1 – k)) for k = 1, 2, ..., 2N.

Note that wrev flips the filter coefficients. So Hi_D and Lo_D are also
quadrature mirror filters. The computation of these filters is performed using
orthfilt. Next, we illustrate these properties with the db6 wavelet. The
plots associated with the following commands are shown in Four Wavelet
Filters for db6 on page 6-22.

% Load scaling filter.
load db6; w = db6;
subplot(421); stem(w); title('Original scaling filter');

% Compute the four filters.
[Lo_D,Hi_D,Lo_R,Hi_R] = orthfilt(w);
subplot(423); stem(Lo_D);
title('Decomposition low-pass filter Lo{_}D');
subplot(424); stem(Hi_D);
title('Decomposition high-pass filter Hi{_}D');
subplot(425); stem(Lo_R);
title('Reconstruction low-pass filter Lo{_}R');
subplot(426); stem(Hi_R);
title('Reconstruction high-pass filter Hi{_}R');

% High and low frequency illustration.
n = length(Hi_D);
freqfft = (0:n-1)/n;
nn = 1:n;
N = 10*n;

6-21

6 Advanced Concepts

for k=1:N
lambda(k) = (k-1)/N;
XLo_D(k) = exp(-2*pi*j*lambda(k)*(nn-1))*Lo_D';
XHi_D(k) = exp(-2*pi*j*lambda(k)*(nn-1))*Hi_D';

end
fftld = fft(Lo_D);
ffthd = fft(Hi_D);
subplot(427); plot(lambda,abs(XLo_D),freqfft,abs(fftld),'o');
title('Transfer modulus: lowpass (Lo{_}D or Lo{_}R')
subplot(428); plot(lambda,abs(XHi_D),freqfft,abs(ffthd),'o');
title('Transfer modulus: highpass (Hi{_}D or Hi{_}R')

Four Wavelet Filters for db6

6-22

Fast Wavelet Transform (FWT) Algorithm

Algorithms
Given a signal s of length N, the DWT consists of log2N stages at most.
Starting from s, the first step produces two sets of coefficients: approximation
coefficients cA1, and detail coefficients cD1. These vectors are obtained by
convolving s with the low-pass filter Lo_D for approximation, and with the
high-pass filter Hi_D for detail, followed by dyadic decimation.

More precisely, the first step is

The length of each filter is equal to 2n. If N = length (s), the signals F and G
are of length N + 2n – 1, and then the coefficients cA1 and cD1 are of length

floor
()N

n
− +⎛

⎝⎜
⎞
⎠⎟

1
2

The next step splits the approximation coefficients cA1 in two parts using the
same scheme, replacing s by cA1 and producing cA2 and cD2, and so on.

6-23

6 Advanced Concepts

So the wavelet decomposition of the signal s analyzed at level j has the
following structure: [cAj, cDj, ..., cD1].

This structure contains for J = 3 the terminal nodes of the following tree.

• Conversely, starting from cAj and cDj , the IDWT reconstructs cAj–1,
inverting the decomposition step by inserting zeros and convolving the
results with the reconstruction filters.

6-24

Fast Wavelet Transform (FWT) Algorithm

• For images, a similar algorithm is possible for two-dimensional wavelets
and scaling functions obtained from one-dimensional wavelets by tensorial
product.

This kind of two-dimensional DWT leads to a decomposition of
approximation coefficients at level j in four components: the approximation
at level j + 1 and the details in three orientations (horizontal, vertical,
and diagonal).

The following charts describe the basic decomposition and reconstruction
steps for images.

6-25

6 Advanced Concepts

6-26

Fast Wavelet Transform (FWT) Algorithm

So, for J = 2, the two-dimensional wavelet tree has the following form.

6-27

6 Advanced Concepts

Finally, let us mention that, for biorthogonal wavelets, the same algorithms
hold but the decomposition filters on one hand and the reconstruction filters
on the other hand are obtained from two distinct scaling functions associated
with two multiresolution analyses in duality.

In this case, the filters for decomposition and reconstruction are, in general,
of different odd lengths. This situation occurs, for example, for “splines”
biorthogonal wavelets used in the toolbox. By zero-padding, the four filters
can be extended in such a way that they will have the same even length.

Why Does Such an Algorithm Exist?
The previous paragraph describes algorithms designed for finite-length
signals or images. To understand the rationale, we must consider
infinite-length signals. The methods for the extension of a given finite-length
signal are described in “Dealing with Border Distortion” on page 6-35.

Let us denote h = Lo_R and g = Hi_R and focus on the one-dimensional case.

We first justify how to go from level j to level j+1, for the approximation vector.
This is the main step of the decomposition algorithm for the computation
of the approximations. The details are calculated in the same way using
the filter g instead of filter h.

Let (Ak
(j))k Z be the coordinates of the vector Aj:

A Aj k
j

j k
k

= ∑ ()
,φ

and Ak
(j+1) the coordinates of the vector Aj+1:

A Aj k
j

j k
k

+
+

+= ∑1
1

1
()

,φ

Ak
(j+1) is calculated using the formula

A h Ak
j

n k n
j

n

() ()+
−= ∑1

2

6-28

Fast Wavelet Transform (FWT) Algorithm

This formula resembles a convolution formula.

The computation is very simple.

Let us define

 h k h k F hk n Ank
j j

n

() (), () ()= − = −+ ∑ and 1

The sequence F(j+1) is the filtered output of the sequence A(j) by the filter h .

We obtain

Ak
(j+1) = F2k

(j+1)

We have to take the even index values of F. This is downsampling.

The sequence A(j+1) is the downsampled version of the sequence F(j+1).

The initialization is carried out using Ak
(0) = s(k), where s(k) is the signal

value at time k.

There are several reasons for this surprising result, all of which are linked to
the multiresolution situation and to a few of the properties of the functions
φj,k and ψj,k.

Let us now describe some of them.

1 The family (,),φ0 k k Z∈ is formed of orthonormal functions. As a

consequence for any j, the family (,),φ j k k Z∈ is orthonormal.

2 The double indexed family

(, ,),ψ j k j Z k Z∈ ∈

is orthonormal.

3 For any j, the (,),φ j k k Z∈ are orthogonal to (, ,),ψ ′ ′ ≤ ∈j k j j k Z .

6-29

6 Advanced Concepts

4 Between two successive scales, we have a fundamental relation, called
the twin-scale relation.

Twin-Scale Relation for φφ

φ φ1 0 0, ,=
∈
∑ hk k
k Z

φ φj k j k
k Z

h+
∈

= ∑1 0, ,

This relation introduces the algorithm’s h filter ()hn n= 2ω . For more
information, see “Filters Used to Calculate the DWT and IDWT” on page
6-19.

5 We check that:

a The coordinate of φj+1,0 on φj,k is hk and does not depend on j.

b The coordinate of φj+1,n on φj,k is equal to φ φj n j k k nh+ −=1 2, ,, .

6 These relations supply the ingredients for the algorithm.

7 Up to now we used the filter h. The high-pass filter g is used in the twin
scales relation linking the ψ and φ functions. Between two successive
scales, we have the following twin-scale fundamental relation.

Twin-Scale Relation Between ψψ and φφ

ψ φ1 0 0, ,=
∈
∑ gk k
k Z

ψ φj k j k
k Z

g+
∈

= ∑1 0, ,

8 After the decomposition step, we justify now the reconstruction algorithm
by building it. Let us simplify the notation. Starting from A1 and D1, let us
study A0 = A1 + Dj1. The procedure is the same to calculate A = Aj+1 + Dj+1.

Let us define αn, δn, αk
0 by

6-30

Fast Wavelet Transform (FWT) Algorithm

A a D A an n
n

n n
n

k k
k

1 1 1 1 0
0

0= = =∑ ∑ ∑φ δ ψ φ, , ,

Let us assess the αk
0 coordinates as

a A A D A D

a

k k k k k

n
n

n k n
n

0
0 0 1 1 0 1 0 1 0

1 0

= = + = +

= +∑ ∑
, , , ,

,

, , , ,

, ,

φ φ φ φ

φ φ δ ψ11 0

2 2

, ,,n k

n k n
n

n k n
n

a h g

φ

δ= +− −∑ ∑

We will focus our study on the first sum a hn k nn −∑ 2 ; the second sum

δn k nn
g −∑ 2 is handled in a similar manner.

The calculations are easily organized if we note that (taking k = 0 in the
previous formulas, makes things simpler)

a h a h a h a h a h

a h h a h h

n n
n

− − − −

− −

= + + + + +

= + + + + +

∑ 2 1 2 0 0 1 2 2 4

1 2 1 0 0 10 0

 aa h h a h1 2 3 2 40− − −+ + +

If we transform the ()αn sequence into a new sequence ()αn defined by

..., α–1, 0, α0, 0, α1, 0, α2, 0, ... that is precisely

 a a an n n2 2 1 0= + =,

Then

a h a hn n
n

n n
n

− −=∑ ∑2

and by extension

6-31

6 Advanced Concepts

a h a hn k n
n

n k n
n

− −=∑ ∑2

Since

a a h gk n k n
n

n k n
n

0 = +− −∑ ∑ δ

the reconstruction steps are:

1 Replace the α and δ sequences by upsampled versions α˜ and δ inserting
zeros.

2 Filter by h and g respectively.

3 Sum the obtained sequences.

One-Dimensional Wavelet Capabilities

Basic One-Dimensional Objects.

Objects Description

Signal in original time s

Ak, 0 ≤ k ≤ j

Dk, 1 ≤ k ≤ j

Original signal

Approximation at level k

Detail at level k

Coefficients in
scale-related time

cAk, 1 ≤ k ≤ j

cDk, 1 ≤ k ≤ j

[cAj, cDj, ..., cD1]

Approximation coefficients at level k

Detail coefficients at level k

Wavelet decomposition at level j, j ≥ 1

Analysis-Decomposition Capabilities.

6-32

Fast Wavelet Transform (FWT) Algorithm

Purpose Input Output File

Single-level decomposition s cA1, cD1 dwt

Single-level decomposition cAj cAj+1, cDj+1 dwt

Decomposition s [cAj, cDj, ..., cD1] wavedec

Synthesis-Reconstruction Capabilities.

Purpose Input Output File

Single-level reconstruction cA1, cD1 s or A0 idwt

Single-level reconstruction cAj+1, cDj+1 cAj idwt

Full reconstruction [cAj, cDj, ..., cD1] s or A0 waverec

Selective reconstruction [cAj, cDj, ..., cD1] Al, Dm wrcoef

Decomposition Structure Utilities.

Purpose Input Output File

Extraction of detail coefficients [cAj, cDj, ..., cD1] cDk, 1 ≤ k ≤ j detcoef

Extraction of approximation
coefficients

[cAj, cDj, ..., cD1] cAk, 0≤ k ≤ j appcoef

Recomposition of the
decomposition structure

[cAj, cDj, ..., cD1] [cAk, cDk, ..., cD1] 1 ≤ k
≤ j

upwlev

To illustrate command-line mode for one-dimensional capabilities, see
“One-Dimensional Analysis Using the Command Line” in the Wavelet Toolbox
Getting Started Guide.

Two-Dimensional Wavelet Capabilities

Basic Two-Dimensional Objects.

6-33

6 Advanced Concepts

Objects Description

s Original image

A0 Approximation at level 0

Ak, 1 ≤ k ≤ j Approximation at level k

Image in original
resolution

Dk, 1 ≤ k ≤ j Details at level k

cAk, 1 ≤ k ≤ j Approximation coefficients at level k

cDk, 1 ≤ k ≤ j Detail coefficients at level k

Coefficients in
scale-related resolution

[cAj, cDj, ..., cD1] Wavelet decomposition at level j

Dk stands for D D Dk
h

k
v

k
d() () (), ,⎡⎣ ⎤⎦ , the horizontal, vertical, and diagonal

details at level k.

The same holds for cDk, which stands for cD cD cDk
h

k
v

k
d() () (), ,⎡⎣ ⎤⎦ .

The two-dimensional files are the same as those for the one-dimensional case,
but with a 2 appended on the end of the command.

For example, idwt becomes idwt2. For more information, see
“One-Dimensional Wavelet Capabilities” on page 6-32.

To illustrate command-line mode for two-dimensional capabilities, see
“Two-Dimensional Analysis Using the Command Line” in the Wavelet Toolbox
Getting Started Guide.

6-34

Dealing with Border Distortion

Dealing with Border Distortion
Classically, the DWT is defined for sequences with length of some power of 2,
and different ways of extending samples of other sizes are needed. Methods
for extending the signal include zero-padding, smooth padding, periodic
extension, and boundary value replication (symmetrization).

The basic algorithm for the DWT is not limited to dyadic length and is based
on a simple scheme: convolution and downsampling. As usual, when a
convolution is performed on finite-length signals, border distortions arise.

Signal Extensions: Zero-Padding, Symmetrization,
and Smooth Padding
To deal with border distortions, the border should be treated differently from
the other parts of the signal.

Various methods are available to deal with this problem, referred to as
“wavelets on the interval” (see [CohDJV93] in “References” on page 6-168).
These interesting constructions are effective in theory but are not entirely
satisfactory from a practical viewpoint.

Often it is preferable to use simple schemes based on signal extension on the
boundaries. This involves the computation of a few extra coefficients at each
stage of the decomposition process to get a perfect reconstruction. It should be
noted that extension is needed at each stage of the decomposition process.

Details on the rationale of these schemes are in Chapter 8 of the bookWavelets
and Filter Banks, by Strang and Nguyen (see [StrN96] in “References” on
page 6-168).

The available signal extension modes are as follows (see dwtmode):

• Zero-padding ('zpd'): This method is used in the version of the DWT
given in the previous sections and assumes that the signal is zero outside
the original support.

The disadvantage of zero-padding is that discontinuities are artificially
created at the border.

6-35

6 Advanced Concepts

• Symmetrization ('sym'): This method assumes that signals or images
can be recovered outside their original support by symmetric boundary
value replication.

It is the default mode of the wavelet transform in the toolbox.

Symmetrization has the disadvantage of artificially creating discontinuities
of the first derivative at the border, but this method works well in general
for images.

• Smooth padding of order 1 ('spd'or 'sp1'): This method assumes
that signals or images can be recovered outside their original support
by a simple first-order derivative extrapolation: padding using a linear
extension fit to the first two and last two values.

Smooth padding works well in general for smooth signals.

• Smooth padding of order 0 ('sp0'): This method assumes that signals
or images can be recovered outside their original support by a simple
constant extrapolation. For a signal extension this is the repetition of the
first value on the left and last value on the right.

• Periodic-padding (1) ('ppd'): This method assumes that signals
or images can be recovered outside their original support by periodic
extension.

The disadvantage of periodic padding is that discontinuities are artificially
created at the border.

The DWT associated with these five modes is slightly redundant. But IDWT
ensures a perfect reconstruction for any of the five previous modes whatever
the extension mode used for DWT.

• Periodic-padding (2) ('per'): If the signal length is odd, the signal is
first extended by adding an extra-sample equal to the last value on the
right. Then a minimal periodic extension is performed on each side. The
same kind of rule exists for images. This extension mode is used for SWT
(1-D & 2-D).

This last mode produces the smallest length wavelet decomposition. But
the extension mode used for IDWT must be the same to ensure a perfect
reconstruction.

6-36

Dealing with Border Distortion

Before looking at an illustrative example, let us compare some properties of
the theoretical Discrete Wavelet Transform versus the actual DWT.

The theoretical DWT is applied to signals that are defined on an infinite
length time interval (Z). For an orthogonal wavelet, this transform has the
following desirable properties:

1 Norm preservation

Let cA and cD be the approximation and detail of the DWT coefficients of
an infinite length signal X. Then the l2–norm is preserved:

X 2 = cA 2 + cD 2

2 Orthogonality

Let A and D be the reconstructed approximation and detail. Then, A and
D are orthogonal and

X 2 = A 2 + D 2

3 Perfect reconstruction

X = A + D

Since the DWT is applied to signals that are defined on a finite-length
time interval, extension is needed for the decomposition, and truncation is
necessary for reconstruction.

To ensure the crucial property 3 (perfect reconstruction) for arbitrary choices
of

• The signal length

• The wavelet

• The extension mode

the properties 1 and 2 can be lost. These properties hold true for an extended
signal of length usually larger than the length of the original signal. So only
the perfect reconstruction property is always preserved. Nevertheless if the

6-37

6 Advanced Concepts

DWT is performed using the periodic extension mode (’per’) and if the length
of the signal is divisible by 2J, where J is the maximum level decomposition,
the properties 1, 2, and 3 remain true.

It is interesting to notice that if arbitrary extension is used, and
decomposition performed using the convolution-downsampling scheme,
perfect reconstruction is recovered using idwt or idwt2. This point is
illustrated below.

% Set initial signal and get filters.
x = sin(0.3*[1:451]); w = 'db9';
[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters(w);
% In fact using a slightly redundant scheme, any signal
% extension strategy works well.
% For example use random padding.

lx = length(x); lf = length(Lo_D);
randn('seed',654);
ex = [randn(1,lf) x randn(1,lf)];
axis([1 lx+2*lf -2 3])
subplot(211), plot(lf+1:lf+lx,x), title('Original signal')
axis([1 lx+2*lf -2 3])

6-38

Dealing with Border Distortion

subplot(212), plot(ex), title('Extended signal')
axis([1 lx+2*lf -2 3])

% Decomposition.
la = floor((lx+lf-1)/2);
ar = wkeep(dyaddown(conv(ex,Lo_D)),la);
dr = wkeep(dyaddown(conv(ex,Hi_D)),la);
% Reconstruction.
xr = idwt(ar,dr,w,lx);

% Check perfect reconstruction.
err0 = max(abs(x-xr))

err0 =
3.0464e-11

Now let us illustrate the differences between the first three methods both for
1-D and 2-D signals.

Zero-Padding

Using the GUI we will examine the effects of zero-padding.

1 From the MATLAB prompt, type

dwtmode('zpd')

2 From the MATLAB prompt, type wavemenu.

The Wavelet Toolbox Main Menu appears.

3 Click the Wavelet 1-D menu item.The discrete wavelet analysis tool for
one-dimensional signal data appears.

4 From the File menu, choose the Example Analysis option and select
Basic Signals > with db2 at level 5 > Two nearby discontinuities.

5 Select Display Mode: Show and Scroll.

The detail coefficients clearly show the signal end effects.

6-39

6 Advanced Concepts

Symmetric Extension

6 From the MATLAB prompt, type

dwtmode('sym')

7 Click the Wavelet 1-D menu item.

The discrete wavelet analysis tool for one-dimensional signal data appears.

8 From the File menu, choose the Example Analysis option and select
Basic Signals > with db2 at level 5 > Two nearby discontinuities.

9 Select Display Mode: Show and Scroll.

The detail coefficients show the signal end effects are present, but the
discontinuities are well detected.

Smooth Padding

10 From the MATLAB prompt, type

6-40

Dealing with Border Distortion

dwtmode('spd')

11 Click the Wavelet 1-D menu item.

The discrete wavelet analysis tool for one-dimensional signal data appears.

12 From the File menu, choose the Example Analysis option and select
Basic Signals > with db2 at level 5 > Two nearby discontinuities.

13 Select Display Mode: Show and Scroll.

The detail coefficients show the signal end effects are not present, and the
discontinuities are well detected.

Let us now consider an image example.

Original Image

1 From the MATLAB prompt, type

load geometry;
% X contains the loaded image and
% map contains the loaded colormap.
nbcol = size(map,1);
colormap(pink(nbcol));
image(wcodemat(X,nbcol));

6-41

6 Advanced Concepts

Zero-Padding

Now we set the extension mode to zero-padding and perform a
decomposition of the image to level 3 using the sym4 wavelet. Then we
reconstruct the approximation of level 3.

2 From the MATLAB prompt, type

lev = 3; wname = 'sym4';
dwtmode('zpd')
[c,s] = wavedec2(X,lev,wname);
a = wrcoef2('a',c,s,wname,lev);
image(wcodemat(a,nbcol));

6-42

Dealing with Border Distortion

Symmetric Extension

Now we set the extension mode to symmetric extension and perform a
decomposition of the image again to level 3 using the sym4 wavelet. Then
we reconstruct the approximation of level 3.

3 From the MATLAB prompt, type

dwtmode('sym')
[c,s] = wavedec2(X,lev,wname);
a = wrcoef2('a',c,s,wname,lev);
image(wcodemat(a,nbcol));

Smooth Padding

Now set the extension mode to smooth padding and perform a
decomposition of the image again to level 3 using the sym4 wavelet. Then
reconstruct the approximation of level 3.

4 From the MATLAB prompt, type

dwtmode('spd')
[c,s] = wavedec2(X,lev,wname);
a = wrcoef2('a',c,s,wname,lev);
image(wcodemat(a,nbcol));

6-43

6 Advanced Concepts

6-44

Discrete Stationary Wavelet Transform (SWT)

Discrete Stationary Wavelet Transform (SWT)
We know that the classical DWT suffers a drawback: the DWT is not a
time-invariant transform. This means that, even with periodic signal
extension, the DWT of a translated version of a signal X is not, in general, the
translated version of the DWT of X.

How to restore the translation invariance, which is a desirable property lost by
the classical DWT? The idea is to average some slightly different DWT, called
ε-decimated DWT, to define the stationary wavelet transform (SWT). This
property is useful for several applications such as breakdown points detection.

The main application of the SWT is de-noising. For more information
on the rationale, see [CoiD95] in “References” on page 6-168. For
examples, see “One-Dimensional Discrete Stationary Wavelet Analysis” and
“Two-Dimensional Discrete Stationary Wavelet Analysis” in the Wavelet
Toolbox Getting Started Guide.

The principle is to average several de-noised signals. Each of them is obtained
using the usual de-noising scheme (see “De-Noising” on page 6-101), but
applied to the coefficients of an ε-decimated DWT.

Note We define the SWT only for signals of length divisible by 2J, where
J is the maximum decomposition level, and we use the DWT with periodic
(per) extension.

ε -Decimated DWT
What is an ε-decimated DWT?

There exist a lot of slightly different ways to handle the discrete wavelet
transform. Let us recall that the DWT basic computational step is a
convolution followed by a decimation. The decimation retains even indexed
elements.

But the decimation could be carried out by choosing odd indexed elements
instead of even indexed elements. This choice concerns every step of the
decomposition process, so at every level we chose odd or even.

6-45

6 Advanced Concepts

If we perform all the different possible decompositions of the original signal,
we have 2J different decompositions, for a given maximum level J.

Let us denote by εj = 1 or 0 the choice of odd or even indexed elements at step
j. Every decomposition is labeled by a sequence of 0s and 1s: ε = ε1...,εJ. This
transform is called the ε-decimated DWT.

You can obtain the basis vectors of the ε-decimated DWT from those of the
standard DWT by applying a shift and corresponds to a special choice of the
origin of the basis functions.

How to Calculate the ε -Decimated DWT: SWT
It is possible to calculate all the ε-decimated DWT for a given signal of length
N, by computing the approximation and detail coefficients for every possible
sequence ε. Do this using iteratively, a slightly modified version of the basic
step of the DWT of the form:

[A,D] = dwt(X,wname,'mode','per','shift',e);

The last two arguments specify the way to perform the decimation step. This
is the classical one for e = 0, but for e = 1 the odd indexed elements are
retained by the decimation.

Of course, this is not a good way to calculate all the ε-decimated DWT, because
many computations are performed many times. We shall now describe
another way, which is the stationary wavelet transform (SWT).

The SWT algorithm is very simple and is close to the DWT one. More precisely,
for level 1, all the ε-decimated DWT (only two at this level) for a given signal
can be obtained by convolving the signal with the appropriate filters as in the
DWT case but without downsampling. Then the approximation and detail
coefficients at level 1 are both of size N, which is the signal length. This can
be visualized in the following figure.

6-46

Discrete Stationary Wavelet Transform (SWT)

The general step j convolves the approximation coefficients at level j–1,
with upsampled versions of the appropriate original filters, to produce the
approximation and detail coefficients at level j. This can be visualized in
the following figure.

Next, we illustrate how to extract a given ε-decimated DWT from the
approximation and detail coefficients structure of the SWT.

6-47

6 Advanced Concepts

We decompose a sequence of height numbers with the SWT, at level J = 3,
using an orthogonal wavelet.

The function swt calculates successively the following arrays, where
A(j,ε1,...,εj) or D(j,ε1,...,εj) denotes an approximation or a detail coefficient at
level j obtained for the ε-decimated DWT characterized by ε = [ε1,...,εj].

Step 0 (Original Data).

A(0) A(0) A(0) A(0) A(0) A(0) A(0) A(0)

Step 1.

D(1,0) D(1,1) D(1,0) D(1,1) D(1,0) D(1,1) D(1,0) D(1,1)

A(1,0) A(1,1) A(1,0) A(1,1) A(1,0) A(1,1) A(1,0) A(1,1)

Step 2.

D(1,0) D(1,1) D(1,0) D(1,1) D(1,0) D(1,1) D(1,0) D(1,1)

D(2,0,0) D(2,1,0) D(2,0,1) D(2,1,1) D(2,0,0) D(2,1,0) D(2,0,1) D(2,1,1)

A(2,0,0) A(2,1,0) A(2,0,1) A(2,1,1) A(2,0,0) A(2,1,0) A(2,0,1) A(2,1,1)

Step 3.

D(1,0) D(1,1) D(1,0) D(1,1) D(1,0) D(1,1) D(1,0) D(1,1)

D(2,0,0) D(2,1,0) D(2,0,1) D(2,1,1) D(2,0,0) D(2,1,0) D(2,0,1) D(2,1,1)

D(3,0,0,0) D(3,1,0,0) D(3,0,1,0) D(3,1,1,0) D(3,0,0,1) D(3,1,0,1) D(3,0,1,1) D(3,1,1,1)

A(3,0,0,0) A(3,1,0,0) A(3,0,1,0) A(3,1,1,0) A(3,0,0,1) A(3,1,0,1) A(3,0,1,1) A(3,1,1,1)

Let j denote the current level, where j is also the current step of the algorithm.
Then we have the following abstract relations with εi = 0 or 1:

[tmpAPP,tmpDET] =
dwt(A(j, 1, , j),wname,'mode','per','shift', j+1);
A(j+1, 1, , j, j+1) = wshift('1D',tmpAPP, j+1);
D(j+1, 1, , j, j+1) = wshift('1D',tmpDET, j+1);

6-48

Discrete Stationary Wavelet Transform (SWT)

where wshift performs a ε-circular shift of the input vector. Therefore, if
εj+1 = 0, the wshift instruction is ineffective and can be suppressed.

Let ε = [ε1,...,εJ] with εi = 0 or 1. We have 2
J = 23 = eight different ε-decimated

DWTs at level 3. Choosing ε, we can retrieve the corresponding ε-decimated
DWT from the SWT array.

Now, consider the last step, J = 3, and let [Cε,Lε] denote the wavelet
decomposition structure of an ε-decimated DWT for a given ε. Then, it can be
retrieved from the SWT decomposition structure by selecting the appropriate
coefficients as follows:

Cε =

A(3, ε1, ε2, ε3) D(3, ε1, ε2, ε3) D(2, ε1, ε2) D(2, ε1, ε2) D(1, ε1) D(1, ε1) D(1, ε1) D(1, ε1)

Lε = [1,1,2,4,8]

For example, the ε-decimated DWT corresponding to ε = [ε1, ε2, ε3] = [1,0,1] is
shown in bold in the sequence of arrays of the previous example.

This can be extended to the 2-D case. The algorithm for the stationary wavelet
transform for images is visualized in the following figure.

6-49

6 Advanced Concepts

Inverse Discrete Stationary Wavelet Transform (ISWT)
Each ε-decimated DWT corresponding to a given ε can be inverted.

6-50

Discrete Stationary Wavelet Transform (SWT)

To reconstruct the original signal using a given ε-decimated DWT
characterized by [ε1,...,εJ], we can use the abstract algorithm

FOR j = J:-1:1
A(j-1, 1, , j-1) = ...
idwt(A(j, 1, , j),D(S, 1, , j)],wname,'mode','per','shift', j);

END

For each choice of ε = (ε1,...,εJ), we obtain the original signal A(0), starting
from slightly different decompositions, and capturing in different ways the
main features of the analyzed signal.

The idea of the inverse discrete stationary wavelet transform is to average the
inverses obtained for every ε-decimated DWT. This can be done recursively,
starting from level J down to level 1.

The ISWT is obtained with the following abstract algorithm:

FOR j = J:-1:1
X0 = idwt(A(j, 1, , j),D(j, 1, , j)],wname, ...

'mode','per','shift',0);
X1 = idwt(A(j, 1, , j),D(j, 1, , j)],wname, ...

'mode','per','shift',1);
X1 = wshift('1D',X1,1);
A(j-1, 1, , j-1) = (X0+X1)/2;

END

Along the same lines, this can be extended to the 2-D case.

More About SWT
Some useful references for the Stationary Wavelet Transform (SWT) are
[CoiD95], [NasS95], and [PesKC96] in “References” on page 6-168.

6-51

6 Advanced Concepts

Lifting Method for Constructing Wavelets
For some applications, you may not be able to find a suitable wavelet among
the usual ones widely available. In this case, you can design a new wavelet
adapted to the problem to be solved or the task to be processed.

For example, you can adapt a wavelet for the continuous wavelet transform
(CWT) to a given pattern so that the resulting wavelet allows accurate
pattern detection (see “New Wavelet for CWT” in the Wavelet Toolbox Getting
Started Guide).

Designing new wavelets that are well suited for the discrete wavelet
transform (DWT) is more delicate and, until recently, was exclusively a topic
for wavelet specialists. The lifting method proposed by Sweldens (see [Swe98]
in “References” on page 6-168) facilitates this kind of construction. It allows
you to generate an infinite number of discrete biorthogonal wavelets starting
from an initial one.

This section introduces the theory behind lifting methods, then presents the
lifting functions of Wavelet Toolbox software and gives two short examples:

• “Lifting Background” on page 6-52

• “Lifting Functions” on page 6-55

For more information on lifting, see [Swe98], [Mal98], [StrN96], and
[MisMOP03] in “References” on page 6-168.

Lifting Background
The DWT is defined by four filters as described in “Fast Wavelet Transform
(FWT) Algorithm” on page 6-19. Two main properties of interest are

• The perfect reconstruction property

• The link with “true” wavelets (how to generate, starting from the filters,
orthogonal or biorthogonal bases of the space of the functions of finite
energy)

To illustrate the perfect reconstruction property, the following filter bank
contains two decomposition filters, ha, ga and two reconstruction filters hs, gs.

6-52

Lifting Method for Constructing Wavelets

The perfect reconstruction property can be expressed by the equality s = e (up
to an eventual shift or delay) where the two signals s and e are defined in
the following figure:

This leads to the following two conditions referred to as perfect reconstruction
(PR):

Hs(z) Ha(z
–1) + Gs(z) Ga(z

–1) = 2 z–d

Hs(z) Ha(–z
–1) + Gs(z) Ga(–z

–1) = 0

where Hs(z), Gs(z) are the z-transforms of the filters hs, gs respectively, and
Ha(–z

–1) and Ga(–z
–1) are the z-transforms of ha, ga respectively.

The first condition is usually (incorrectly) called the perfect reconstruction
condition and the second is the anti-aliasing condition.

Below we refer to the four filters (or equivalently four z-transforms) verifying
the (PR) conditions as biorthogonal quadruplets.

The principle of lifting is to generate from a given biorthogonal quadruplet
a new one by applying a finite sequence of primal or dual elementary lifting
steps (ELS).

A primal ELS generates from the biorthogonal quadruplet (Ha,Ga,Hs,Gs), a
new one (Ha

N,Ga,Hs,Gs
N) by

6-53

6 Advanced Concepts

Ha
N (z) = Ha(z) – Ga(z) S(z

–2)

Gs
N (z) = Gs(z) + Hs(z) S(z

2)

where S is any Laurent polynomial.

Let us recall that C is a Laurent polynomial if

C(z) = c1 z
pmax + c2 z

pmax–1 + ... + cend z
pmin

involving positive and negative integer powers of z. The degree of C is defined
as (pmax–pmin).

Similarly, a dual ELS generates from the same initial biorthogonal
quadruplet, a new one (Ha,Ga

N,Hs
H,Gs) by

Hs
N (z) = Hs(z) + Gs(z) T(z

2)

Ga
N (z) = Ga(z) – Ha(z) T(z

–2)

where T is any Laurent polynomial.

These new quadruplets verify the perfect reconstruction conditions (PR).
Note that even if the initial biorthogonal quadruplet is associated with “true”
wavelets, the new ones are not automatically associated with “true” wavelets
but remain useful for discrete wavelet transform of sequences instead of
functions.

The previous results are sufficient to generate lifted quadruplets.
Nevertheless, by introducing the polyphase matrix, interesting theoretical
and algorithmic results can be derived. The synthesis polyphase matrix P
associated with the biorthogonal quadruplet (Ha,Ga,Hs,Gs) is the 2-by-2 matrix
defined (using the MATLAB conventions) by

P(z) = [even(Hs)(z) even(Gs)(z) ; odd(Hs)(z) odd(Gs)(z)]

where

even(C)(z2) = (C(z) + C(–z)) / 2

6-54

Lifting Method for Constructing Wavelets

odd(C)(z2) = (C(z) – C(–z)) / 2z–1

Then after a primal lifting the new polyphase matrix PN is obtained simply
from P the initial one by

PN(z) = P(z) * [1 S(z) ; 0 1]

and after a dual lifting by

PN(z) = P(z) * [1 0 ; T(z) 1]

P itself can be decomposed, up to a normalization, as a product of matrices
of the form [1 S(z) ; 0 1] or [1 0 ; T(z) 1] as soon as P is associated with a
biorthogonal quadruplet. This form leads to the efficient polyphase algorithm
(see [StrN96] in “References” on page 6-168) because the inverses of such
elementary matrices are explicit.

Another useful consequence is that any biorthogonal quadruplet can be
obtained by a sequence of ELS, up to a normalization, starting from a
particular seed called the “lazy” wavelet (which is not a “true” wavelet and
which simply separates odd and even samples of the filter bank input signal).

So, in the Wavelet Toolbox software, the key structure to perform what we
commonly call the lifting wavelet transform (LWT) is a lifting scheme, which
is simply a sequence of ELS and normalization steps.

Lifting Functions
The lifting functions of the toolbox are organized into five groups:

• “Lifting Schemes ” on page 6-56

• “Biorthogonal Quadruplets of Filters and Lifting Schemes” on page 6-56

• “Usual Biorthogonal Quadruplets” on page 6-56

• “Lifting Wavelet Transform (LWT)” on page 6-57

• “Laurent Polynomials and Matrices” on page 6-57

6-55

6 Advanced Concepts

Lifting Schemes

Function Name Description

lsinfo Information about lifting schemes

displs Display a lifting scheme

addlift Add primal or dual elementary lifting steps to a
lifting scheme

Biorthogonal Quadruplets of Filters and Lifting Schemes
These functions connect lifting schemes to biorthogonal quadruplets of filters
and associated scaling and wavelet function pairs.

Function Name Description

liftfilt Apply elementary lifting steps on quadruplet of
filters

filt2ls Transform a quadruplet of filters to a lifting
scheme

ls2filt Transform a lifting scheme to a quadruplet of
filters

bswfun Compute and plot biorthogonal “scaling and
wavelet” functions

Usual Biorthogonal Quadruplets
These functions provide some basic lifting schemes associated with some
usual orthogonal or biorthogonal (“true”) wavelets and the “lazy” one. These
schemes can be used to initialize a lifting procedure.

Function Name Description

wavenames Provides usual wavelet names available for LWT

liftwave Provides lifting scheme associated with a usual
wavelet

wave2lp Provides Laurent polynomials associated with a
usual wavelet

6-56

Lifting Method for Constructing Wavelets

Lifting Wavelet Transform (LWT)
These functions contain the direct and inverse lifting wavelet transform
(LWT) files for both 1-D and 2-D signals. LWT reduces to the polyphase
version of the DWT algorithm with zero-padding extension mode and without
extra-coefficients.

Function Name Description

lwt 1-D lifting wavelet transform

ilwt Inverse 1-D lifting wavelet transform

lwtcoef Extract or reconstruct 1-D LWT wavelet
coefficients

lwt2 2-D lifting wavelet transform

ilwt2 Inverse 2-D lifting wavelet transform

lwtcoef2 Extract or reconstruct 2-D LWT wavelet
coefficients

Laurent Polynomials and Matrices
These functions permit an entry to representation and calculus of Laurent
polynomials and matrices.

Function Name Description

laurpoly Constructor for the class of Laurent polynomials

laurmat Constructor for the class of Laurent matrices

The lifting folder and the two object folders @laurpoly and @laurmat contain
many other files.

Examples of Lifting Methods
These two simple examples illustrate the basic lifting capabilities of Wavelet
Toolbox software. For more examples, see Chapter 2, “Wavelets in Action:
Examples and Case Studies” and the demos provided with the toolbox.

Example 1. A primal lifting starting from Haar wavelet

6-57

6 Advanced Concepts

% Start from the Haar wavelet and get the corresponding
% lifting scheme.
lshaar = liftwave('haar');

% Visualize the obtained lifting scheme.
displs(lshaar);

lshaar = {...
'd' [-1.00000000] [0]
'p' [0.50000000] [0]
[1.41421356] [0.70710678] []
};

% Add a primal ELS to the lifting scheme.
els = {'p',[-0.125 0.125],0};
lsnew = addlift(lshaar,els);
displs(lsnew);

lsnew = {...
'd' [-1.00000000] [0]
'p' [0.50000000] [0]
'p' [-0.12500000 0.12500000] [0]
[1.41421356] [0.70710678] []
};

% Transform the lifting scheme to biorthogonal
% filters quadruplet.
[LoD,HiD,LoR,HiR] = ls2filt(lsnew);

% Visualize the two pairs of scaling and wavelet
% functions.
bswfun(LoD,HiD,LoR,HiR,'plot');

6-58

Lifting Method for Constructing Wavelets

Illustrating LWT and integer LWT

% Perform LWT at level 1 of a simple signal.
x = 1:8;
[cA,cD] = lwt(x,lsnew)

cA =

1.9445 4.9497 7.7782 10.6066

cD =

0.7071 0.7071 0.7071 0.7071

% Perform
% integer to integer LWT of the same signal.
lshaarInt = liftwave('haar','int2int');

6-59

6 Advanced Concepts

lsnewInt = addlift(lshaarInt,els);
[cAint,cDint] = lwt(x,lsnewInt)

cAint =

1 3 5 7

cDint =

1 1 1 1

% Invert the two transforms.
err = max(max(abs(x-ilwt(cA,cD,lsnew))))

err =

4.4409e-016

errInt = max(max(abs(x-ilwt(cAint,cDint,lsnewInt))))

errInt =

0

Example 2. Two primal liftings starting from the Haar wavelet

% Get Haar filters.
[LoD,HiD,LoR,HiR] = wfilters('haar');

% Lift the Haar filters.
twoels(1) = struct('type','p','value',...
laurpoly([0.125 -0.125],0));
twoels(2) = struct('type','p','value',...
laurpoly([0.125 -0.125],1));
[LoDN,HiDN,LoRN,HiRN] = liftfilt(LoD,HiD,LoR,HiR,twoels);

% The biorthogonal wavelet bior1.3 is obtained up to
% an unsignificant sign.
[LoDB,HiDB,LoRB,HiRB] = wfilters('bior1.3');
samewavelet = ...

6-60

Lifting Method for Constructing Wavelets

isequal([LoDB,HiDB,LoRB,HiRB],[LoDN,-HiDN,LoRN,HiRN])

samewavelet =

1

% Visualize the two times two pairs of scaling and wavelet
% functions.
bswfun(LoDN,HiDN,LoRN,HiRN,'plot');

6-61

6 Advanced Concepts

Frequently Asked Questions

Continuous or Discrete Analysis?
When is continuous analysis more appropriate than discrete analysis? To
answer this, consider the related questions: Do you need to know all values
of a continuous decomposition to reconstruct the signal s exactly? Can you
perform nonredundant analysis?

When the energy of the signal is finite, not all values of a decomposition
are needed to exactly reconstruct the original signal, provided that you are
using a wavelet that satisfies some admissibility condition (see [Dau92]
pages 7, 24, and 27). Usual wavelets satisfy this condition. In which case, a
continuous-time signal s is characterized by the knowledge of the discrete
transform C(j,k),(j,k) Z2.

In such cases, discrete analysis is sufficient and continuous analysis is
redundant. When the signal is recorded in continuous time or on a very fine
time grid, both analyses are possible. Which should be used? It depends; each
one has its own advantages:

• Discrete analysis ensures space-saving coding and is sufficient for exact
reconstruction.

• Continuous analysis is often easier to interpret, since its redundancy
tends to reinforce the traits and makes all information more visible. This
is especially true of very subtle information. Thus, the analysis gains in
“readability” and in ease of interpretation what it loses in terms of saving
space.

Why Are Wavelets Useful for Space-Saving Coding?
The family of functions (φ0,k;ψj,l) j ≤ 0, (k,l) Z

2 used for the analysis is an
orthogonal basis, therefore leading to nonredundancy. The orthogonality
properties are φ0,k⊥ψj′,k′ as soon as j′ ≤ 0, and ψj,k⊥ψj′,k′ as soon as (j,k) ≠ (j′,k′).

Let us remember that for a one-dimensional signal, u⊥v stands for

u x v x dx
R

() () =∫ 0

6-62

Frequently Asked Questions

For biorthogonal wavelets, the idea is similar.

What Is the Advantage Having Zero Average and Sometimes
Several Vanishing Moments?

When the wavelet’s k + 1 moments are equal to zero (t t dtj
R

ψ () =∫ 0 for

j = 0, . . .,k) all the polynomial signals s t a tj
j

j k

() =
≤ ≤
∑

0
have zero wavelet

coefficients.

As a consequence, the details are also zero. This property ensures the
suppression of signals that are polynomials of a degree lower or equal to k.

What About the Regularity of a Wavelet Ψ ?
In theoretical and practical studies, the notion of regularity has been
increasing in importance. Wavelets are tools used to study regularity and
to conduct local studies. Deterministic fractal signals or Brownian motion
trajectories are locally very irregular; for example, the latter are continuous
signals, but their first derivative exists almost nowhere.

The definition of the concept of regularity is somewhat technical. To make
things simple, we will define the regularity s of a signal f.

If the signal is s-time continuously differentiable at x0 and s is an integer (≥
0), then the regularity is s.

If the derivative of f of order m resembles |x–x0|
r locally around x0, then

s = m + r with 0 < r < 1.

The regularity of f in a domain is that of its least regular point.

The greater s, the more regular the signal.

The regularity of certain wavelets is known. The following table gives some
indications for Daubechies wavelets.

6-63

6 Advanced Concepts

ψ db1 = Haar db2 db3 db4 db5 db7 db10

Regularity Discontinuous 0.5 0.91 1.27 1.59 2.15 2.90

We have an asymptotic relation linking the size of the support of the
Daubechies wavelets dbN and their regularity: when N→∞,

length(support) = 2 , regularity |N s
N=
5

The functions are more regular at certain points than at others (see Zooming
in on a db3 Wavelet on page 6-64).

Zooming in on a db3 Wavelet

Selecting a regularity and a wavelet for the regularity is useful in estimations
of the local properties of functions or signals. This can be used, for example,
to make sure that a signal has a constant regularity at all points. Work by
Donoho, Johnstone, Kerkyacharian, and Picard on function estimation and
nonlinear regression is currently under way to adapt the statistical estimators
to unknown regularity. See also the remarks by I. Daubechies (see [Dau92] in
“References” on page 6-168).

From a practical viewpoint, these questions arise in the world of finance in
dealing with monetary and stock markets where detailed studies of very fast
transactions are required.

6-64

Frequently Asked Questions

Are Wavelets Useful in Fields Other Than Signal or Image
Processing?

• From a theoretical viewpoint, wavelets are used to characterize large sets
of mathematical functions and are used in the study of operators linked to
partial differential equations.

• From a practical viewpoint, wavelets are used in several fields of numerical
analysis, making certain complex calculations easier to handle or more
precise.

What Functions Are Candidates to Be a Wavelet?
If a function f is continuous, has null moments, decreases quickly towards 0
when x tends towards infinity, or is null outside a segment of R, it is a likely
candidate to become a wavelet.

More precisely, the admissibility condition for ψ ∈ ∩L R L R1 2() () is

ˆ () ˆ ()ψ ψ
ψ

s
s

ds
s
s

ds K
R R

2 2

= = < +∞− +∫ ∫

The family of shifts and dilations of ψ allows all finite energy signals to be
reconstructed using the details in all scales. This allows only continuous
analysis.

A wavelet satisfying only the admissibility condition is said to be crude.

In the toolbox, the ψ wavelet is usually associated with a scaling function
φ. There are, however, some ψ wavelets for which we do not know how to
associate a φ. In some cases we know how to prove that φ does not exist, for
example, the Mexican hat wavelet.

Is It Easy to Build a New Wavelet?
For a minimal requirement on the wavelet properties, it is easy to build a
new wavelet but not very interesting unless the new wavelet is adapted

6-65

6 Advanced Concepts

to a specific task. For example the paragraph “New Wavelet for CWT” in
the Wavelet Toolbox Getting Started Guide explains how to obtain wavelets
adapted to a given pattern, which can then be used for an accurate pattern
detection. If more interesting properties (like the existence of φ for example)
are needed, then building the wavelet is more difficult. Let us mention
that an interesting approach is the lifting method (see “Lifting Method for
Constructing Wavelets” on page 6-52).

Very few wavelets have an explicit analytical expression. Notable exceptions
are wavelets that are piecewise polynomials (Haar, Battle-Lemarié; see
[Dau92] in “References” on page 6-168), Morlet, or Mexican hat.

Wavelets, even db2, db3, ..., are defined by functional equations. The solution
is numerical, and is accomplished using a fairly simple algorithm.

The basic property is the existence of a linear relation between the two
functions φ(x/2) and φ(x). Another relation of the same type links ψ(x/2) to
φ(x). These are the relations of the two scales, the twin-scale relations.

Indeed there are two sequences h and g of coefficients such that

h l Z g l Z∈ ∈2 2(), ()

and

1
2 2

1

2

1
2 2

1

2

φ φ

ψ φ

x
h x n

x
g x n

n
n Z

n
n Z

⎛
⎝⎜

⎞
⎠⎟
= −

⎛
⎝⎜

⎞
⎠⎟
= −

∈

∈

∑

∑

()

()

By rewriting these formulas using Fourier transforms (expressed using a
hat) we obtain

ˆ() ˆ() ˆ() ˆ () ˆ () ˆ()φ ω ω φ ω ψ ω ω φ ω2
1

2
2

1

2
= =h g

6-66

Frequently Asked Questions

There are φ functions for which the h has a finite impulse response (FIR):
there is only a finite number of nonzero hn coefficients. The associated
wavelets were built by I. Daubechies (see [Dau92] in “References” on page
6-168) and are used extensively in the toolbox. The reader can refer to page
164 and Chapter 10 of the book Wavelets and Filter Banks, by Strang and
Nguyen (see [StrN96] in “References” on page 6-168).

What Is the Link Between Wavelet and Fourier Analysis?
Wavelet analysis complements the Fourier analysis for which there are
several functions: fft in MATLAB software and spectrum and sptool in
Signal Processing Toolbox™ software.

Fourier analysis uses the basic functions sin(ωt), cos(ωt), and exp(iωt).

• In the frequency domain, these functions are perfectly localized. The
functions are suited to the analysis and synthesis of signals with a
simple spectrum, which is very well localized in frequency; for example,
sin(ω1 t) + 0.5 sin(ω2 t) – cos(ω3 t).

• In the time domain, these functions are not localized. It is difficult for them
to analyze or synthesize complex signals presenting fast local variations
such as transients or abrupt changes: the Fourier coefficients for a
frequency ω will depend on all values in the signal. To limit the difficulties
involved, it is possible to “window” the signal using a regular function,
which is zero or nearly zero outside a time segment [–m, m].

We then build “a well localized slice” as I. Daubechies calls it (see page 2
of [Dau92] in “References” on page 6-168). The windowed-Fourier analysis
coefficients are the doubly indexed coefficients:

G t s u g t u e dus
R

i u(,) ()ω ω= −()∫ −

The analogy of this formula with that of the wavelet coefficients is obvious:

C a t s u
a

t u
a

du
R

(,) ()= ⎛
⎝
⎜

⎞
⎠
⎟

−⎛
⎝⎜

⎞
⎠⎟∫ 1

 ψ

6-67

6 Advanced Concepts

The large values of a correspond to small values of ω.

The Fourier coefficient Gs(ω,t) depends on the values of the signal s on the
segment [t – m, t + m] with a constant width. If ψ, like g, is zero outside of
[–m, m], the C(a,t) coefficients will depend on the values of the signal s on the
segment [t – am, t + am] of width 2am, which varies as a function of a. This
slight difference solves several difficulties, allowing a kind of time-windowed
analysis, different at the various scales a.

The wavelets stay competitive, however, even in contexts considered favorable
for the Fourier technique. I. Daubechies (see [Dau92] pages 3 to 6) gives
an example of windowed-Fourier processing and complex Morlet wavelet

processing, ψ π π() ()/ /t Ce e et a i t a= −− −2 2 2 2 4 with a = 4, of a signal composed
mainly of the sum of two sines. This wavelet analysis gives good results.

How to Connect Scale to Frequency?
A common question is, what is the relationship between scale and frequency?

The answer can only be given in a broad sense, and it’s better to speak about
the pseudo-frequency corresponding to a scale.

A way to do it is to compute the center frequency Fc of the wavelet and to use
the following relationship (see [Abr97] in “References” on page 6-168).

F
F

aa
c=
⋅ Δ

where

• a is a scale.

• Δ is the sampling period.

• Fc is the center frequency of a wavelet in Hz.

• Fa is the pseudo-frequency corresponding to the scale a, in Hz.

The idea is to associate with a given wavelet a purely periodic signal of
frequency Fc. The frequency maximizing the fft of the wavelet modulus is

6-68

Frequently Asked Questions

Fc. The function centfrq can be used to compute the center frequency and it
allows the plotting of the wavelet with the associated approximation based on
the center frequency. Center Frequencies for Real and Complex Wavelets on
page 6-70 shows some examples generated using the centfrq function.

• Four real wavelets: Daubechies wavelets of order 2 and 7, coiflet of order 1,
and the Gaussian derivative of order 4.

• Two complex wavelets: the complex Gaussian derivative of order 6 and a
Shannon complex wavelet.

As you can see, the center frequency-based approximation captures the main
wavelet oscillations. So the center frequency is a convenient and simple
characterization of the leading dominant frequency of the wavelet.

If we accept to associate the frequency Fc to the wavelet function, then when
the wavelet is dilated by a factor a, this center frequency becomes Fc / a.
Lastly, if the underlying sampling period is Δ, it is natural to associate to the
scale a the frequency

F
F

aa
c=
⋅ Δ

The function scal2frq computes this correspondence.

6-69

6 Advanced Concepts

Center Frequencies for Real and Complex Wavelets

6-70

Frequently Asked Questions

To illustrate the behavior of this procedure, consider the following simple test.
We generate sine functions of sensible frequencies F0. For each function, we
shall try to detect this frequency by a wavelet decomposition followed by a
translation of scale to frequency. More precisely, after a discrete wavelet
decomposition, we identify the scale a* corresponding to the maximum value
of the energy of the coefficients. The translated frequency F* is then given by

scal2frq(a_star,'wname',sampling_period)

The F* values are close to the chosen F0. The plots at the end of the example
present the periods instead of the frequencies. If we change the F0 values
slightly, the results remain satisfactory.

For example:

% Set sampling period and wavelet name.
delta = 0.1; wname = 'coif3';

% Set scales.
amax = 7;
a = 2.^[1:amax];

% Compute associated pseudo-frequencies.
f = scal2frq(a,wname,delta);

% Compute associated pseudo-periods.
per = 1./f;

% Plot pseudo-periods versus scales.
subplot(211), plot(a,per)
title(['Wavelet: ',wname, ', Sampling period: ',num2str(delta)])
xlabel('Scale')
ylabel('Computed pseudo-period')

% For each scale 2^i:
% - generate a sine function of period per(i);
% - perform a wavelet decomposition;
% - identify the highest energy level;
% - compute the detected pseudo-period.
for i = 1:amax

6-71

6 Advanced Concepts

% Generate sine function of period
% per(i) at sampling period delta.
t = 0:delta:100;
x = sin((t.*2*pi)/per(i));

% Decompose x at level 9.
[c,l] = wavedec(x,9,wname);

% Estimate standard deviation of detail coefficients.
stdc = wnoisest(c,l,[1:amax]);
% Compute identified period.
[y,jmax] = max(stdc);
idper(i) = per(jmax);

end

% Compare the detected and computed pseudo-periods.
subplot(212), plot(per,idper,'o',per,per)
title('Detected vs computed pseudo-period')
xlabel('Computed pseudo-period')
ylabel('Detected pseudo-period')

Detected Versus Computed Pseudo-Periods

6-72

Wavelet Families: Additional Discussion

Wavelet Families: Additional Discussion
There are different types of wavelet families whose qualities vary according to
several criteria. The main criteria are:

• The support of ψ ψ, (and φ φ,): the speed of convergence to 0 of these

functions ψ ψ ω() ()t or () when the time t or the frequency ω goes to infinity,
which quantifies both time and frequency localizations

• The symmetry, which is useful in avoiding dephasing in image processing

• The number of vanishing moments for ψ or for φ (if it exists), which is
useful for compression purposes

• The regularity, which is useful for getting nice features, like smoothness
of the reconstructed signal or image, and for the estimated function in
nonlinear regression analysis

These are associated with two properties that allow fast algorithm and
space-saving coding:

• The existence of a scaling function φ

• The orthogonality or the biorthogonality of the resulting analysis

They may also be associated with these less important properties:

• The existence of an explicit expression

• The ease of tabulating

• The familiarity with use

Typing waveinfo in command-line mode displays a survey of the main
properties of all wavelet families available in the toolbox.

Note that the φ and ψ functions can be computed using wavefun; the filters
are generated using wfilters. We provide definition equations for several
wavelets. Some are given explicitly by their time definitions, others by their
frequency definitions, and still others by their filters.

The following table outlines the wavelet families included in the toolbox.

6-73

6 Advanced Concepts

Wavelet Family
Short Name Wavelet Family Name

'haar' Haar wavelet

'db' Daubechies wavelets

'sym' Symlets

'coif' Coiflets

'bior' Biorthogonal wavelets

'rbio' Reverse biorthogonal wavelets

'meyr' Meyer wavelet

'dmey' Discrete approximation of Meyer wavelet

'gaus' Gaussian wavelets

'mexh' Mexican hat wavelet

'morl' Morlet wavelet

'cgau' Complex Gaussian wavelets

'shan' Shannon wavelets

'fbsp' Frequency B-Spline wavelets

'cmor' Complex Morlet wavelets

Daubechies Wavelets: dbN
In dbN, N is the order. Some authors use 2N instead of N. More about
this family can be found in [Dau92] pages 115, 132, 194, 242. By typing
waveinfo('db'), at the MATLAB command prompt, you can obtain a survey
of the main properties of this family.

6-74

Wavelet Families: Additional Discussion

Daubechies Wavelets db4 on the Left and db8 on the Right

This family includes the Haar wavelet, written db1, the simplest wavelet
imaginable and certainly the earliest. Using waveinfo('haar'), you can
obtain a survey of the main properties of this wavelet.

Haar

ψ(x) = 1, if x [0, 0.5)

ψ(x) = –1, if x [0.5, 1)

ψ(x) = 0, if x∉[0, 1)

φ(x) = 1, if x [0, 1)

φ(x) = 0, if x∉[0, 1)

dbN
These wavelets have no explicit expression except for db1, which is the Haar
wavelet. However, the square modulus of the transfer function of h is explicit
and fairly simple.

• Let P y C yk
N k

k
N k() = − +
=
−∑ 1
0
1

, where Ck
N k− +1 denotes the binomial

coefficients.

6-75

6 Advanced Concepts

Then

m P

m

N

0
2 2 2

0

2 2

1

() cos sin

()

ω ω ω

ω

= ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=where
22 0

2 1
h ek

ik
k

N −
=
−∑ ω

• The support length of ψ and φ is 2N – 1. The number of vanishing moments
of ψ is N.

• Most dbN are not symmetrical. For some, the asymmetry is very
pronounced.

• The regularity increases with the order. When N becomes very large, ψ

and φ belong to C
Nμ where µ is approximately equal to 0.2. Certainly,

this asymptotic value is too pessimistic for small-order N. Note that the
functions are more regular at certain points than at others.

• The analysis is orthogonal.

Symlet Wavelets: symN
In symN, N is the order. Some authors use 2N instead of N. Symlets are
only near symmetric; consequently some authors do not call them symlets.
More about symlets can be found in [Dau92], pages 194, 254-257. By typing
waveinfo('sym') at the MATLAB command prompt, you can obtain a survey
of the main properties of this family.

6-76

Wavelet Families: Additional Discussion

Symlets sym4 on the Left and sym8 on the Right

Daubechies proposes modifications of her wavelets that increase their
symmetry can be increased while retaining great simplicity.

The idea consists of reusing the function m0 introduced in the dbN,
considering the |m0(ω)|

2 as a function W of z = eiω.

Then we can factor W in several different ways in the form of

W z U z U
Z

() ()= ⎛
⎝⎜

⎞
⎠⎟

1
because the roots of W with modulus not equal to 1 go in

pairs. If one of the roots is z1, then

1

1z is also a root.

• By selecting U such that the modulus of all its roots is strictly less than
1, we build Daubechies wavelets dbN. The U filter is a “minimum phase
filter.”

• By making another choice, we obtain more symmetrical filters; these are
symlets.

The symlets have other properties similar to those of the dbNs.

Coiflet Wavelets: coifN
In coifN, N is the order. Some authors use 2N instead of N. For the coiflet
construction, see [Dau92] pages 258–259. By typing waveinfo('coif') at the

6-77

6 Advanced Concepts

MATLAB command prompt, you can obtain a survey of the main properties of
this family.

Coiflets coif3 on the Left and coif5 on the Right

Built by Daubechies at the request of Coifman, the function ψ has 2N
moments equal to 0 and, what is more unusual, the function φ has 2N–1
moments equal to 0. The two functions have a support of length 6N–1.

The coifN ψ and φ are much more symmetrical than the dbNs. With respect
to the support length, coifN has to be compared to db3N or sym3N. With
respect to the number of vanishing moments of ψ, coifN has to be compared to
db2N or sym2N.

If s is a sufficiently regular continuous time signal, for large j the coefficient

s j k, ,φ− is approximated by 2 22− −j js k/ () .

If s is a polynomial of degree d, d ≤ N – 1, then the approximation becomes
an equality. This property is used, connected with sampling problems, when
calculating the difference between an expansion over the φj,l of a given signal
and its sampled version.

Biorthogonal Wavelet Pairs: biorNr.Nd
More about biorthogonal wavelets can be found in [Dau92] pages 259, 262–85
and in [Coh92]. By typing waveinfo('bior') at the MATLAB command

6-78

Wavelet Families: Additional Discussion

prompt, you can obtain a survey of the main properties of this family, as well
as information about Nr and Nd orders and associated filter lengths.

Biorthogonal Wavelets bior2.4 on the Left and bior4.4 on the Right

The new family extends the wavelet family. It is well known in the subband
filtering community that symmetry and exact reconstruction are incompatible
(except for the Haar wavelet) if the same FIR filters are used for reconstruction
and decomposition. Two wavelets, instead of just one, are introduced:

• One, ψ , is used in the analysis, and the coefficients of a signal s are

 c s x x dxj k j k, ,() ()= ∫ ψ

• The other, ψ, is used in the synthesis

s c j k j kj k
= ∑ , ,,

ψ

In addition, the wavelets ψ and ψ are related by duality in the following
sense:

ψ ψ

φ

j k j kx x dx j j k k, ,() ()′ ′ = ≠ ′ ≠ ′∫ 0

0

 as soon as or and even

,, ,() ()k kx x dx k kφ0 0′ = ≠ ′∫ as soon as

6-79

6 Advanced Concepts

It becomes apparent, as Cohen pointed out in his thesis, that “the useful
properties for analysis (e.g., oscillations, zero moments) can be concentrated
on the ψ function whereas the interesting properties for synthesis (regularity)
are assigned to the ψ function. The separation of these two tasks proves
very useful” (see [Coh92] page 110).

ψ ψ, can have very different regularity properties (see [Dau92] page 269).

The ψ ψ φ, , , and φ functions are zero outside of a segment.

The calculation algorithms are maintained, and thus very simple.

The filters associated with m0 and m0 can be symmetrical. The functions
used in the calculations are easier to build numerically than those used in the
usual wavelets.

Meyer Wavelet: meyr
Both ψ and φ are defined in the frequency domain, starting with an
auxiliary function ν (see [Dau92] pages 117, 119, 137, 152). By typing
waveinfo('meyr') at the MATLAB command prompt, you can obtain a
survey of the main properties of this wavelet.

Meyer Wavelet

The Meyer wavelet and scaling function are defined in the frequency domain:

• Wavelet function

6-80

Wavelet Families: Additional Discussion

ˆ () () sin/ /ψ ω π π ν
π
ω π ωω= −⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

≤ ≤−2
2

3
2

1
2
3

41 2 2e ifi
ππ

ψ ω π π ν
π
ω πω

3

2
2

3
4

1
4
3

1 2 2ˆ () () cos/ /= −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

≤− e ifi ωω π≤ 8
3

and ˆ () ,ψ ω ω π π= ∉ ⎡
⎣⎢

⎤
⎦⎥

0
2
3

8
3

 if

where ν () [,]a a a a a a= − + −() ∈4 2 335 84 70 20 0 1

• Scaling function

ˆ() ()

ˆ() ()

/

/

φ ω π ω π

φ ω π π ν
π
ω

= ≤

= −⎛
⎝⎜

−

−

2
2
3

2
2

3
2

1

1 2

1 2

cos

if

⎞⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

≤ ≤

= >

if

if

2
3

4
3

0
4
3

π ω π

φ ω ω πˆ()

By changing the auxiliary function, you get a family of different wavelets. For
the required properties of the auxiliary function ν (see “References” on page
6-168 for more information). This wavelet ensures orthogonal analysis.

The function ψ does not have finite support, but ψ decreases to 0 when ,
faster than any inverse polynomial

∀ ∈ ∃n CnΝ, such that ψ ()x C xn

n
≤ +()−1 2

This property holds also for the derivatives

∀ ∈ ∀ ∈ ∃k N n N Ck n, , , , such that ψ ()
, ()k

k nx C x n≤ + −1 2

6-81

6 Advanced Concepts

The wavelet is infinitely differentiable.

Note Although the Meyer wavelet is not compactly supported, there exists a
good approximation leading to FIR filters, and then allowing DWT. By typing
waveinfo('dmey') at the MATLAB command prompt, you can obtain a
survey of the main properties of this pseudo-wavelet.

Battle-Lemarie Wavelets
See [Dau92] pages 146–148, 151.

These wavelets are not included in the toolbox, but we use the spline functions
in the biorthogonal family.

There are two forms of the wavelet: one does not ensure the analysis to be
orthogonal, while the other does. For N = 1, the scaling functions are linear
splines. For N = 2, the scaling functions are quadratic B-spline with finite
support. More generally, for an N-degree B-spline,

ˆ ()
sin(/)

/
/ /φ ω π ω

ω
κω() = ⎡

⎣⎢
⎤
⎦⎥

− −
− +

2
2

2
1 2 2

1
e i

N

with κ = 0 if N is odd, κ = 1 if N is even.

This formula can be used to build the filters. The twin scale relation is

φ φ() ()x C x M jM
j
M

j
M= − − +− +
=
+∑2 2 12 2 1

0
2 1

if N = 2M

φ φ() ()x C x M jM
j
M

j
M= − − +− − +
=
+∑2 2 12 1 2 2

0
2 2

if N = 2M + 1

• For an even N, φ is symmetrical around, x = 1/2; ψ is antisymmetrical
around x = 1/2. For an odd N, φ is symmetrical around x = 0; ψ is
symmetrical around x = 1/2.

• The analysis becomes orthogonal if we transform the functions ψ and φ
somewhat. For N = 1, for instance, let

6-82

Wavelet Families: Additional Discussion

φ ω π ω

ω ω

⊥ −() =
+⎡⎣ ⎤⎦

3 2
4 2

1 2 2

1 2 1 2
2

2 2 1 2
/ /

/
()

sin (/)

cos (/)

• The supports of ψ and φ⊥ are not finite, but the decrease of the functions ψ

and φ⊥ to 0 is exponential. The support of φ is compact. See [Dau92] p. 151.

• The ψ functions have derivatives up to order N–1.

Mexican Hat Wavelet: mexh
See [Dau92] page 75.

By typing waveinfo('mexh') at the MATLAB command prompt, you can
obtain a survey of the main properties of this wavelet.

Mexican Hat

ψ π() ()/ /x x e x= ⎛
⎝
⎜

⎞
⎠
⎟ −− −2

3
11 4 2 22

This function is proportional to the second derivative function of the Gaussian
probability density function.

As the φ function does not exist, the analysis is not orthogonal.

Morlet Wavelet: morl
See [Dau92] page 76.

6-83

6 Advanced Concepts

By typing waveinfo('morl') at the MATLAB command prompt you can
obtain a survey of the main properties of this wavelet.

Morlet Wavelet

ψ () cos()x Ce xx= − 2

5

The constant C is used for normalization in view of reconstruction.

The Morlet wavelet does not satisfy exactly the admissibility condition
discussed in “What Functions Are Candidates to Be a Wavelet?” on page 6-65.

Additional Real Wavelets
Some other real wavelets are available in the toolbox.

Reverse Biorthogonal Wavelet Pairs: rbioNr.Nd
This family is obtained from the biorthogonal wavelet pairs previously
described.

You can obtain a survey of the main properties of this family by typing
waveinfo('rbio') from the MATLAB command line.

6-84

Wavelet Families: Additional Discussion

Reverse Biorthogonal Wavelet rbio1.5

Gaussian Derivatives Family: gaus

This family is built starting from the Gaussian function f x C ep
x() = − 2

by
taking the pth derivative of f.

The integer p is the parameter of this family and in the previous formula, Cp
is such that

f p() 2
1= where f (p) is the pth derivative of f.

You can obtain a survey of the main properties of this family by typing
waveinfo('gaus') from the MATLAB command line.

6-85

6 Advanced Concepts

Gaussian Derivative Wavelet gaus8

FIR Based Approximation of the Meyer Wavelet: dmey
See [Abr97] page 268.

This wavelet is a FIR based approximation of the Meyer wavelet, allowing
fast wavelet coefficients calculation using DWT.

You can obtain a survey of the main properties of this wavelet by typing
waveinfo('dmey') from the MATLAB command line.

FIR Based Approximation of the Meyer Wavelet

6-86

Wavelet Families: Additional Discussion

Complex Wavelets
Some complex wavelet families are available in the toolbox.

Complex Gaussian Wavelets: cgau
This family is built starting from the complex Gaussian function

f x C e ep
ix x() = − − 2

by taking the pth derivative of f. The integer p is the
parameter of this family and in the previous formula, Cp is such that

f p() 2
1= where f (p) is the pth derivative of f.

You can obtain a survey of the main properties of this family by typing
waveinfo('cgau') from the MATLAB command line.

Complex Gaussian Wavelet cgau8

Complex Morlet Wavelets: cmor
See [Teo98] pages 62–65.

6-87

6 Advanced Concepts

A complex Morlet wavelet is defined by

ψ
π

π()x
f

e e
b

i f x
x
fc

b

= 1 2

2

depending on two parameters:

• fb is a bandwidth parameter.

• fc is a wavelet center frequency.

You can obtain a survey of the main properties of this family by typing
waveinfo('cmor') from the MATLAB command line.

Complex Morlet Wavelet morl 1.5-1

Complex Frequency B-Spline Wavelets: fbsp
See [Teo98] pages 62–65.

A complex frequency B-spline wavelet is defined by

6-88

Wavelet Families: Additional Discussion

ψ π()x f
f x
m

eb
b

m
i f xc= ⎛

⎝⎜
⎞
⎠⎟

⎛
⎝
⎜

⎞
⎠
⎟sinc 2

depending on three parameters:

• m is an integer order parameter (m ≥ 1).

• fb is a bandwidth parameter.

• fc is a wavelet center frequency.

You can obtain a survey of the main properties of this family by typing
waveinfo('fbsp') from the MATLAB command line.

Complex Frequency B-Spline Wavelet fbsp 2-0.5-1

Complex Shannon Wavelets: shan
See [Teo98] pages 62–65.

This family is obtained from the frequency B-spline wavelets by settingm to 1.

6-89

6 Advanced Concepts

A complex Shannon wavelet is defined by

ψ π()x f f x eb b
i f xc= ()sinc 2

depending on two parameters:

• fb is a bandwidth parameter.

• fc is a wavelet center frequency.

You can obtain a survey of the main properties of this family by typing
waveinfo('shan') from the MATLAB command line.

Complex Shannon Wavelet shan 0.5-1

6-90

Wavelet Families: Additional Discussion

Summary of Wavelet Families and Associated
Properties (Part 1)

Property morl mexh meyr haar dbN symN coifN biorNr.Nd

Crude
• •

Infinitely regular
• • •

Arbitrary regularity
• • • •

Compactly supported
orthogonal • • • •

Compactly supported
biothogonal •

Symmetry
• • • • •

Asymmetry
•

Near symmetry
• •

Arbitrary number of
vanishing moments • • • •

Vanishing moments
for φ •

6-91

6 Advanced Concepts

Property morl mexh meyr haar dbN symN coifN biorNr.Nd

Existence of φ
• • • • • •

Orthogonal analysis
• • • • •

Biorthogonal analysis
• • • • • •

Exact reconstruction ≈
• • • • • • •

FIR filters
• • • • •

Continuous transform
• • • • • • • •

Discrete transform
• • • • •

Fast algorithm
• • • • •

Explicit expression
• • •

For splines

Crude wavelet — A wavelet is said to be crude when satisfying only
the admissibility condition. See “What Functions Are Candidates to Be a
Wavelet?” on page 6-65.

Regularity — See “What About the Regularity of a Wavelet Ψ ?” on page
6-63.

6-92

Wavelet Families: Additional Discussion

Orthogonal— See “Details and Approximations” on page 6-15.

Biorthogonal— See “Biorthogonal Wavelet Pairs: biorNr.Nd” on page 6-78.

Vanishing moments— See “Suppressing Signals” on page 6-97.

Exact reconstruction— See “Reconstruction Filters” in theWavelet Toolbox
Getting Started Guide.

Continuous— See “Continuous Wavelet Transform” in the Wavelet Toolbox
Getting Started Guide.

Discrete— See “Discrete Wavelet Transform” in theWavelet Toolbox Getting
Started Guide.

FIR filters — See “Filters Used to Calculate the DWT and IDWT” on page
6-19.

Summary of Wavelet Families and Associated
Properties (Part 2)

Property rbioNr.Nd gaus dmey cgau cmor fbsp shan

Crude
• • • • •

Infinitely regular
• • • • •

Arbitrary regularity
•

Compactly supported
orthogonal

Compactly supported
biothogonal •

6-93

6 Advanced Concepts

Property rbioNr.Nd gaus dmey cgau cmor fbsp shan

Symmetry
• • • • • • •

Asymmetry

Near symmetry

Arbitrary number of
vanishing moments •

Vanishing moments for
φ

Existence of φ
•

Orthogonal analysis

Biorthogonal analysis
•

Exact reconstruction
• •

≈
• • • •

FIR filters
• •

Continuous transform
• •

Discrete transform
• •

Fast algorithm
• •

6-94

Wavelet Families: Additional Discussion

Property rbioNr.Nd gaus dmey cgau cmor fbsp shan

Explicit expression For splines
• • • • •

Complex valued
• • • •

Complex continuous
transform • • • •

FIR-based
approximation •

Crude wavelet — A wavelet is said to be crude when satisfying only
the admissibility condition. See “What Functions Are Candidates to Be a
Wavelet?” on page 6-65.

Regularity — See “What About the Regularity of a Wavelet Ψ ?” on page
6-63.

Orthogonal— See “Details and Approximations” on page 6-15.

Biorthogonal— See “Biorthogonal Wavelet Pairs: biorNr.Nd” on page 6-78.

Vanishing moments— See “Suppressing Signals” on page 6-97.

Exact reconstruction— See “Reconstruction Filters” in theWavelet Toolbox
Getting Started Guide.

Continuous— See “Continuous Wavelet Transform” in the Wavelet Toolbox
Getting Started Guide.

Discrete— See “Discrete Wavelet Transform” in theWavelet Toolbox Getting
Started Guide.

6-95

6 Advanced Concepts

FIR filters — See “Filters Used to Calculate the DWT and IDWT” on page
6-19.

6-96

Wavelet Applications: More Detail

Wavelet Applications: More Detail
Chapter 1, “Wavelet Applications” and Chapter 2, “Wavelets in Action:
Examples and Case Studies” illustrate wavelet applications with examples
and case studies. This section reexamines some of the applications with
additional theory and more detail.

Suppressing Signals
As shown in “Suppressing Signals” on page 1-15, by suppressing a part of a
signal the remainder may be highlighted.

Let ψ be a wavelet with at least k + 1 vanishing moments:

for j = 0, ..., k, ∫Rx
jψ(x)dx = 0

If the signal s is a polynomial of degree k, then the coefficients C(a,b) = 0 for
all a and all b. Such wavelets automatically suppress the polynomials. The
degree of s can vary with time x, provided that it remains less than k.

If s is now a polynomial of degree k on segment [α,β], then C(a,b) = 0 as long as

the support of the function
1

a

x b
a

ψ −⎛
⎝⎜

⎞
⎠⎟ is included in [α,β]. The suppression

is local. Effects will appear on the edges of the segment.

Likewise, let us suppose that, on [α,β] to which 0 belongs, we have the
expansion s(x) = [s(0) + xs′(0) = x2s(2)(0) + ... + xks(k)(0)] + g(x). The s and g
signals then have the same wavelet coefficients. This is the technical meaning
of the phrase “The wavelet suppresses a polynomial part of signal s.” The
signal g is the “irregular” part of the signal s. The ψ wavelet systematically
suppresses the regular part and analyzes the irregular part. This effect is
easily seen in details D1 through D4 in “Example 2: A Frequency Breakdown
(Discontinuity)” on page 2-10 (see the curves d1, d2, d3, and d4). The wavelet
suppresses the slow sine wave, which is locally assimilated to a polynomial.

Another way of suppressing a component of the signal is to modify and force
certain coefficients C(a,b) to be equal to 0. Having selected a set E of indices,

we stipulate that ∀ ∈(,)a b E , C(a,b) = 0. We then synthesize the signal using
the modified coefficients.

6-97

6 Advanced Concepts

Let us illustrate, with the following file, some features of wavelet processing
using coefficients (resulting plots can be found in Suppress or Modify Signal
Components, Acting on Coefficients on page 6-99).

% Load original 1-D signal.
load sumsin; s = sumsin;

% Set the wavelet name and perform the decomposition
% of s at level 4, using coif3.
w = 'coif3'; maxlev = 4;
[c,l] = wavedec(s,maxlev,w);
newc = c;

% Force to zero the detail coefficients at levels 3 and 4.
newc = wthcoef('d',c,l,[3,4]);

% Force the detail coefficients at level 1 to zero on
% original time interval [400:600] and shrink otherwise.
% determine first and last index of
% level 1 coefficients.
k = maxlev+1;
first = sum(l(1:k-1))+1; last = first+l(k)-1;
indd1 = first:last;

% shrink by dividing by 3.
newc(indd1) = c(indd1)/3;

% find at level 1 indices of coefficients
% in the interval [400:600],
% note that time t in original grid corresponds to time
% t/2^k on the grid at level k. Here k=1.
indd1 = first+400/2:first+600/2;

% force it to zero.
newc(indd1) = zeros(size(indd1));

% Set to 4 a coefficient at level 2 corresponding roughly
% to original time t = 500.
k = maxlev; first = sum(l(1:k-1))+1;
newc(first+500/2^2) = 4;

6-98

Wavelet Applications: More Detail

% Synthesize modified decomposition structure.
synth = waverec(newc,l,w);

Suppress or Modify Signal Components, Acting on Coefficients

Simple procedures to select the set of indices E are used for de-noising
and compression purposes (see “De-Noising” on page 6-101 and “Data
Compression” on page 6-115).

6-99

6 Advanced Concepts

Splitting Signal Components
Wavelet analysis is a linear technique: the wavelet coefficients of the linear
combination of two signals αs(1) + βs(2) are equal to the linear combination

of their wavelet coefficients α βC Cj k j k,
()

,
()1 2+ . The same holds true for the

corresponding approximations and details, for example α βA Aj j
() ()1 2+ and

α βD Dj j
() ()1 2+ .

Noise Processing
Let us first analyze noise as an ordinary signal. Then the probability
characteristics correlation function, spectrum, and distribution need to be
studied.

In general, for a one-dimensional discrete-time signal, the high frequencies
influence the details of the first levels (the small values of j), while the
low frequencies influence the deepest levels (the large values of j) and the
associated approximations.

If a signal comprising only white noise is analyzed (for example, see “Example
3: Uniform White Noise” on page 2-15), the details at the various levels
decrease in amplitude as the level increases. The variance of the details also
decreases as the level increases. The details and approximations are not
white noise anymore, as color is introduced by the filters.

On the coefficients C(j,k), where j stands for the scale and k for the time, we
can add often-satisfied properties for discrete time signals:

• If the analyzed signal s is stationary, zero mean, and a white noise, the
coefficients are uncorrelated.

• If furthermore s is Gaussian, the coefficients are independent and Gaussian.

• If s is a colored, stationary, zero mean Gaussian sequence, then the
coefficients remain Gaussian. For each scale level j, the sequence of
coefficients is a colored stationary sequence. It could be interesting to
know how to choose the wavelet that would de-correlate the coefficients.
This problem has not yet been resolved. Furthermore, the wavelet (if
indeed it exists) most probably depends on the color of the signal. For the

6-100

Wavelet Applications: More Detail

wavelet to be calculated, the color must be known. In most instances, this
is beyond our reach.

• If s is a zero mean ARMA model stationary for each scale j, then C(j,k),k Z
is also a stationary, zero mean ARMA process whose characteristics depend
on j.

• If s is a noise whose

- Correlation function ρ is known, we know how to calculate the
correlations of C(j,k) and C(j,k´).

- Spectrum ρ̂ is known, we know how to calculate the spectrum of C(j,k),
k Z and the cross spectrum of two different levels j and j´.

These results are easily established, since they can be deduced from the fact
that the C(a,b) coefficients are calculated primarily by convolving ψ and
s, and using conventional formulas. The quantity that comes into play is
the self-reproduction function U(a,b), which is obtained by analyzing the ψ
wavelet as if it was a signal:

U a b
a

x b
a

x dx
R

(,) ()= −⎛
⎝⎜

⎞
⎠⎟∫ 1 ψ ψ

From the results for coefficients we deduce the properties of the details (and
of the approximations), by using the formula

D n C j k nj j kk Z
() (,) (),= ∈∑ ψ

where the C(j,k) coefficients are random variables and the functions ψj,k are
not. If the support of ψ is finite, only a finite number of terms will be summed.

De-Noising
This section discusses the problem of signal recovery from noisy data. This
problem is easy to understand looking at the following simple example, where
a slow sine is corrupted by a white noise.

6-101

6 Advanced Concepts

Simple De-Noising Example

Basic One-Dimensional Model
The underlying model for the noisy signal is basically of the following form:

s(n) = f(n) + σe(n)

where time n is equally spaced.

In the simplest model we suppose that e(n) is a Gaussian white noise N(0,1)
and the noise level σ is supposed to be equal to 1.

The de-noising objective is to suppress the noise part of the signal s and to
recover f.

6-102

Wavelet Applications: More Detail

The method is efficient for families of functions f that have only a few nonzero
wavelet coefficients. These functions have a sparse wavelet representation.
For example, a smooth function almost everywhere, with only a few abrupt
changes, has such a property.

From a statistical viewpoint, the model is a regression model over time and
the method can be viewed as a nonparametric estimation of the function f
using orthogonal basis.

De-Noising Procedure Principles
The general de-noising procedure involves three steps. The basic version
of the procedure follows these steps:

1 Decompose

Choose a wavelet, choose a level N. Compute the wavelet decomposition of
the signal s at level N.

2 Threshold detail coefficients

For each level from 1 to N, select a threshold and apply soft thresholding to
the detail coefficients.

3 Reconstruct

Compute wavelet reconstruction using the original approximation
coefficients of level N and the modified detail coefficients of levels from
1 to N.

Two points must be addressed: how to choose the threshold, and how to
perform the thresholding.

Soft or Hard Thresholding?
Thresholding can be done using the function

yt = wthresh(y,sorh,thr)

which returns soft or hard thresholding of input y, depending on the sorh
option. Hard thresholding is the simplest method. Soft thresholding has

6-103

6 Advanced Concepts

nice mathematical properties and the corresponding theoretical results are
available (For instance, see [Don95] in “References” on page 6-168).

Let us give a simple example.

y = linspace(-1,1,100);
thr = 0.4;
ythard = wthresh(y,'h',thr);
ytsoft = wthresh(y,'s',thr);

Hard and Soft Thresholding of the Signal s = x

Comment Let t denote the threshold. The hard threshold signal is x if |x|
> t, and is 0 if |x| ≤ t. The soft threshold signal is sign (x)(|x| – t) if |x|
> t and is 0 if |x| ≤ t.

Hard thresholding can be described as the usual process of setting to zero
the elements whose absolute values are lower than the threshold. Soft
thresholding is an extension of hard thresholding, first setting to zero the
elements whose absolute values are lower than the threshold, and then
shrinking the nonzero coefficients toward 0 (see Hard and Soft Thresholding
of the Signal s = x on page 6-104).

As can be seen in the comment of Hard and Soft Thresholding of the Signal s
= x on page 6-104), the hard procedure creates discontinuities at x = ±t, while
the soft procedure does not.

6-104

Wavelet Applications: More Detail

Threshold Selection Rules
According to the basic noise model, four threshold selection rules are
implemented in the file thselect. Each rule corresponds to a tptr option
in the command

thr = thselect(y,tptr)

which returns the threshold value.

Option Threshold Selection Rule

'rigrsure' Selection using principle of Stein’s Unbiased Risk
Estimate (SURE)

'sqtwolog' Fixed form threshold equal to sqrt(2*log(length(s)))

'heursure' Selection using a mixture of the first two options

'minimaxi' Selection using minimax principle

• Option tptr = 'rigrsure' uses for the soft threshold estimator a
threshold selection rule based on Stein’s Unbiased Estimate of Risk
(quadratic loss function). You get an estimate of the risk for a particular
threshold value t. Minimizing the risks in t gives a selection of the
threshold value.

• Option tptr = 'sqtwolog' uses a fixed form threshold yielding minimax
performance multiplied by a small factor proportional to log(length(s)).

• Option tptr = 'heursure' is a mixture of the two previous options. As a
result, if the signal-to-noise ratio is very small, the SURE estimate is very
noisy. So if such a situation is detected, the fixed form threshold is used.

• Option tptr = 'minimaxi' uses a fixed threshold chosen to yield minimax
performance for mean square error against an ideal procedure. The
minimax principle is used in statistics to design estimators. Since the
de-noised signal can be assimilated to the estimator of the unknown
regression function, the minimax estimator is the option that realizes the
minimum, over a given set of functions, of the maximum mean square error.

Typically it is interesting to show how thselect works if y is a Gaussian
white noise N(0,1) signal.

6-105

6 Advanced Concepts

y = randn(1,1000);

thr = thselect(y,'rigrsure')
thr =

2.0735

thr = thselect(y,'sqtwolog')
thr =

3.7169

thr = thselect(y,'heursure')
thr =

3.7169

thr = thselect(y,'minimaxi')
thr =

2.2163

Because y is a standard Gaussian white noise, we expect that each method
kills roughly all the coefficients and returns the result f(x) = 0. For Stein’s
Unbiased Risk Estimate and minimax thresholds, roughly 3% of coefficients
are saved. For other selection rules, all the coefficients are set to 0.

We know that the detail coefficients vector is the superposition of the
coefficients of f and the coefficients of e, and that the decomposition of e leads
to detail coefficients, which are standard Gaussian white noises.

So minimax and SURE threshold selection rules are more conservative and
would be more convenient when small details of function f lie near the noise
range. The two other rules remove the noise more efficiently. The option
'heursure' is a compromise. In this example, the fixed form threshold wins.

Recalling step 2 of the de-noise procedure, the function thselect performs a
threshold selection, and then each level is thresholded. This second step can
be done using wthcoef, directly handling the wavelet decomposition structure
of the original signal s.

6-106

Wavelet Applications: More Detail

Dealing with Unscaled Noise and Nonwhite Noise
Usually in practice the basic model cannot be used directly. We examine here
the options available to deal with model deviations in the main de-noising
function wden.

The simplest use of wden is

sd = wden(s,tptr,sorh,scal,n,wav)

which returns the de-noised version sd of the original signal s obtained using
the tptr threshold selection rule. Other parameters needed are sorh, scal, n,
and wav. The parameter sorh specifies the thresholding of details coefficients
of the decomposition at level n of s by the wavelet called wav. The remaining
parameter scal is to be specified. It corresponds to threshold’s rescaling
methods.

Option Corresponding Model

'one' Basic model

'sln' Basic model with unscaled noise

'mln' Basic model with nonwhite noise

• Option scal = 'one' corresponds to the basic model.

• In general, you can ignore the noise level and it must be estimated. The
detail coefficients cD1 (the finest scale) are essentially noise coefficients
with standard deviation equal to σ. The median absolute deviation of the
coefficients is a robust estimate of σ. The use of a robust estimate is crucial
for two reasons. The first one is that if level 1 coefficients contain f details,
then these details are concentrated in a few coefficients if the function f is
sufficiently regular. The second reason is to avoid signal end effects, which
are pure artifacts due to computations on the edges.

Option scal = 'sln' handles threshold rescaling using a single estimation
of level noise based on the first-level coefficients.

• When you suspect a nonwhite noise e, thresholds must be rescaled by a
level-dependent estimation of the level noise. The same kind of strategy as
in the previous option is used by estimating σlev level by level.

6-107

6 Advanced Concepts

This estimation is implemented in the file wnoisest, directly handling the
wavelet decomposition structure of the original signal s.

Option scal = 'mln' handles threshold rescaling using a level-dependent
estimation of the level noise.

For a more general procedure, the wdencmp function performs wavelet
coefficients thresholding for both de-noising and compression purposes, while
directly handling one-dimensional and two-dimensional data. It allows you to
define your own thresholding strategy selecting in

xd = wdencmp(opt,x,wav,n,thr,sorh,keepapp);

where

• opt = 'gbl' and thr is a positive real number for uniform threshold.

• opt = 'lvd' and thr is a vector for level dependent threshold.

• keepapp = 1 to keep approximation coefficients, as previously and

• keepapp = 0 to allow approximation coefficients thresholding.

• x is the signal to be de-noised and wav, n, sorh are the same as above.

De-Noising in Action
We begin with examples of one-dimensional de-noising methods with the first
example credited to Donoho and Johnstone. You can use the following file to
get the first test function using wnoise.

% Set signal to noise ratio and set rand seed.
sqrt_snr = 4; init = 2055615866;

% Generate original signal xref and a noisy version x adding
% a standard Gaussian white noise.
[xref,x] = wnoise(1,11,sqrt_snr,init);

% De-noise noisy signal using soft heuristic SURE thresholding
% and scaled noise option, on detail coefficients obtained
% from the decomposition of x, at level 3 by sym8 wavelet.
xd = wden(x,'heursure','s','one',3,'sym8');

6-108

Wavelet Applications: More Detail

Blocks Signal De-Noising

Since only a small number of large coefficients characterize the original signal,
the method performs very well (see the figure Blocks Signal De-Noising on
page 6-109). If you want to see more about how the thresholding works, use
the GUI (see “De-Noising Signals” on page 1-18).

As a second example, let us try the method on the highly perturbed part of
the electrical signal studied above.

According to this previous analysis, let us use db3 wavelet and decompose at
level 3.

To deal with the composite noise nature, let us try a level-dependent noise
size estimation.

6-109

6 Advanced Concepts

% Load electrical signal and select part of it.
load leleccum; indx = 2000:3450;
x = leleccum(indx);

% Find first value in order to avoid edge effects.
deb = x(1);

% De-noise signal using soft fixed form thresholding
% and unknown noise option.
xd = wden(x-deb,'sqtwolog','s','mln',3,'db3')+deb;

Electrical Signal De-Noising

The result is quite good in spite of the time heterogeneity of the nature of the
noise after and before the beginning of the sensor failure around time 2450.

6-110

Wavelet Applications: More Detail

Extension to Image De-Noising
The de-noising method described for the one-dimensional case applies also
to images and applies well to geometrical images. A direct translation of
the one-dimensional model is

s(i,j) = f(i,j) + σe(i,j)

where e is a white Gaussian noise with unit variance.

The two-dimensional de-noising procedure has the same three steps and
uses two-dimensional wavelet tools instead of one-dimensional ones. For
the threshold selection, prod(size(s)) is used instead of length(s) if the
fixed form threshold is used.

Note that except for the “automatic” one-dimensional de-noising case,
de-noising and compression are performed using wdencmp. As an example,
you can use the following file illustrating the de-noising of a real image.

% Load original image.
load woman

% Generate noisy image.
init = 2055615866; randn('seed',init);
x = X + 15*randn(size(X));

% Find default values. In this case fixed form threshold
% is used with estimation of level noise, thresholding
% mode is soft and the approximation coefficients are
% kept.
[thr,sorh,keepapp] = ddencmp('den','wv',x);

% thr is equal to estimated_sigma*sqrt(log(prod(size(X))))
thr

thr =

107.6428

% De-noise image using global thresholding option.
xd = wdencmp('gbl',x,'sym4',2,thr,sorh,keepapp);

6-111

6 Advanced Concepts

% Plots.
colormap(pink(255)), sm = size(map,1);
subplot(221), image(wcodemat(X,sm)), title('Original Image')
subplot(222), image(wcodemat(x,sm)), title('Noisy Image')
subplot(223), image(wcodemat(xd,sm)), title('De-Noised Image')

The result shown below is acceptable.

Image De-Noising

One-Dimensional Variance Adaptive Thresholding of Wavelet
Coeffiients
Local thresholding of wavelet coefficients, for one- or two-dimensional data,
is a capability available from a lot of graphical interface tools throughout
Wavelet Toolbox software (see “Using Wavelets”) in the Wavelet Toolbox
Getting Started Guide.

The idea is to define level by level time-dependent thresholds, and then
increase the capability of the de-noising strategies to handle nonstationary
variance noise models.

6-112

Wavelet Applications: More Detail

More precisely, the model assumes (as previously) that the observation is
equal to the interesting signal superimposed on a noise (see “De-Noising”
on page 6-101).

s(n) = f(n) + σe(n)

But the noise variance can vary with time. There are several different
variance values on several time intervals. The values as well as the intervals
are unknown.

Let us focus on the problem of estimating the change points or equivalently
the intervals. The algorithm used is based on an original work of Marc
Lavielle about detection of change points using dynamic programming (see
[Lav99] in “References” on page 6-168).

Let us generate a signal from a fixed-design regression model with two noise
variance change points located at positions 200 and 600.

% Generate blocks test signal.
x = wnoise(1,10);

% Generate noisy blocks with change points.
init = 2055615866; randn('seed',init);
bb = randn(1,length(x));
cp1 = 200; cp2 = 600;
x = x + [bb(1:cp1),bb(cp1+1:cp2)/3,bb(cp2+1:end)];

The aim of this example is to recover the two change points from the signal x.
In addition, this example illustrates how the GUI tools (see “Using Wavelets”)
locate the change points for interval dependent thresholding.

Step 1. Recover a noisy signal by suppressing an approximation.

% Perform a single-level wavelet decomposition
% of the signal using db3.
wname = 'db3'; lev = 1;
[c,l] = wavedec(x,lev,wname);

% Reconstruct detail at level 1.
det = wrcoef('d',c,l,wname,1);

6-113

6 Advanced Concepts

The reconstructed detail at level 1 recovered at this stage is almost signal
free. It captures the main features of the noise from a change points
detection viewpoint if the interesting part of the signal has a sparse wavelet
representation. To remove almost all the signal, we replace the biggest values
by the mean.

Step 2. To remove almost all the signal, replace 2% of biggest values by
the mean.

x = sort(abs(det));
v2p100 = x(fix(length(x)*0.98));
ind = find(abs(det)>v2p100);
det(ind) = mean(det);

Step 3. Use the wvarchg function to estimate the change points with the
following parameters:

• The minimum delay between two change points is d = 10.

• The maximum number of change points is 5.

[cp_est,kopt,t_est] = wvarchg(det,5)
cp_est =

199 601

kopt =
2

t_est =
1024 0 0 0 0 0
601 1024 0 0 0 0
199 601 1024 0 0 0
199 261 601 1024 0 0
207 235 261 601 1024 0
207 235 261 393 601 1024

Two change points and three intervals are proposed. Since the three interval
variances for the noise are very different the optimization program detects
easily the correct structure.

6-114

Wavelet Applications: More Detail

The estimated change points are close to the true change points: 200 and 600.

Step 4. (Optional) Replace the estimated change points.

For 2 ≤ i ≤ 6, t_est(i,1:i-1) contains the i-1 instants of the variance
change points, and since kopt is the proposed number of change points; then

cp_est = t_est(kopt+1,1:kopt);

You can replace the estimated change points by computing

% cp_New = t_est(knew+1,1:knew); % where 1 knew 5

More About De-Noising
The de-noising methods based on wavelet decomposition appear mainly
initiated by Donoho and Johnstone in the USA, and Kerkyacharian and
Picard in France. Meyer considers that this topic is one of the most significant
applications of wavelets (cf. [Mey93] page 173). This chapter and the
corresponding files follow the work of the above mentioned researchers. More
details can be found in Donoho’s references in “References” on page 6-168 and
in “More About the Thresholding Strategies” on page 6-132.

Data Compression
The compression features of a given wavelet basis are primarily linked to the
relative scarceness of the wavelet domain representation for the signal. The
notion behind compression is based on the concept that the regular signal
component can be accurately approximated using the following elements: a
small number of approximation coefficients (at a suitably chosen level) and
some of the detail coefficients.

Like de-noising, the compression procedure contains three steps:

1 Decompose

Choose a wavelet, choose a level N. Compute the wavelet decomposition of
the signal s at level N.

2 Threshold detail coefficients

6-115

6 Advanced Concepts

For each level from 1 to N, a threshold is selected and hard thresholding
is applied to the detail coefficients.

3 Reconstruct

Compute wavelet reconstruction using the original approximation
coefficients of level N and the modified detail coefficients of levels from
1 to N.

The difference of the de-noising procedure is found in step 2. There are two
compression approaches available. The first consists of taking the wavelet
expansion of the signal and keeping the largest absolute value coefficients.
In this case, you can set a global threshold, a compression performance, or a
relative square norm recovery performance.

Thus, only a single parameter needs to be selected. The second approach
consists of applying visually determined level-dependent thresholds.

Let us examine two real-life examples of compression using global
thresholding, for a given and unoptimized wavelet choice, to produce a nearly
complete square norm recovery for a signal (see Signal Compression on page
6-117) and for an image (see Image Compression on page 6-118).

% Load electrical signal and select a part.
load leleccum; indx = 2600:3100;
x = leleccum(indx);
% Perform wavelet decomposition of the signal.
n = 3; w = 'db3';
[c,l] = wavedec(x,n,w);
% Compress using a fixed threshold.
thr = 35;
keepapp = 1;
[xd,cxd,lxd,perf0,perfl2] = ...

wdencmp('gbl',c,l,w,n,thr,'h',keepapp);

6-116

Wavelet Applications: More Detail

Signal Compression

The result is quite satisfactory, not only because of the norm recovery
criterion, but also on a visual perception point of view. The reconstruction
uses only 15% of the coefficients.

% Load original image.
load woman; x = X(100:200,100:200);
nbc = size(map,1);

% Wavelet decomposition of x.
n = 5; w = 'sym2'; [c,l] = wavedec2(x,n,w);

% Wavelet coefficients thresholding.
thr = 20;
keepapp = 1;
[xd,cxd,lxd,perf0,perfl2] = ...

wdencmp('gbl',c,l,w,n,thr,'h',keepapp);

6-117

6 Advanced Concepts

Image Compression

If the wavelet representation is too dense, similar strategies can be used in
the wavelet packet framework to obtain a sparser representation. You can
then determine the best decomposition with respect to a suitably selected
entropy-like criterion, which corresponds to the selected purpose (de-noising
or compression).

Compression Scores
When compressing using orthogonal wavelets, the Retained energy in
percentage is defined by

100 2 2* ,)vector-norm(coeffs of the current decomposition

v

()
eector-norm original signal(,)2 2()

When compressing using biorthogonal wavelets, the previous definition is not
convenient. We use instead the Energy ratio in percentage defined by

100 2 2* ,)

(

vector-norm(compressed signal

vector-norm origina

()
ll signal,)2 2()

and as a tuning parameter the Norm cfs recovery defined by

6-118

Wavelet Applications: More Detail

100 2 2* ,)vector-norm(coeffs of the current decomposition

v

()
eector-norm coeffs of the original decomposition(,)2 2()

The Number of zeros in percentage is defined by

100 * (number of zeros of the current decomposition)
(number oof coefficients)

Function Estimation: Density and Regression
In this section we present two problems of functional estimation:

• Density estimation

• Regression estimation

Note According to the classical statistical notations, in this section, ĝ
denotes the estimator of the function g instead of the Fourier transform of g.

Density Estimation
The data are values (X(i), 1 ≤ i ≤ n) sampled from a distribution whose
density is unknown. We are looking for an estimate of this density.

What Is Density.

The well known histogram creates the information on the density distribution
of a set of measures. At the very beginning of the 19th century, Laplace, a
French scientist, repeating sets of observations of the same quantity, was
able to fit a simple function to the density distribution of the measures. This
function is called now the Laplace-Gauss distribution.

Density Applications.

Density estimation is a core part of reliability studies. It permits the
evaluation of the life-time probability distribution of a TV set produced by a
factory, the computation of the instantaneous availability, and of such other

6-119

6 Advanced Concepts

useful characteristics as the mean time to failure. A very similar situation
occurs in survival analysis, when studying the residual lifetime of a medical
treatment.

Density Estimators.

As in the regression context, the wavelets are useful in a nonparametric
context, when very little information is available concerning the shape of the
unknown density, or when you don’t want to tell the statistical estimator
what you know about the shape.

Several alternative competitors exist. The orthogonal basis estimators are
based on the same ideas as the wavelets. Other estimators rely on statistical
window techniques such as kernel smoothing methods.

We have theorems proving that the wavelet-based estimators behave at
least as well as the others, and sometimes better. When the density h(x)
has irregularities, such as a breakdown point or a breakdown point of the
derivative h′(x), the wavelet estimator is a good solution.

How to Perform Wavelet-Based Density Estimation.

The key idea is to reduce the density estimation problem to a fixed-design
regression model. More precisely the main steps are as follows:

1 Transform the sample X into (Xb, Yb) data where the Xb are equally
spaced, using a binning procedure. For each bin i, Yb(i) = number of X(j)
within bin i.

2 Perform a wavelet decomposition of Yb viewed as a signal, using fast
algorithm. Thus, the underlying Xb data is 1, 2, ..., nb where nb is the
number of bins.

3 Threshold the wavelet coefficients according to one of the methods
described for de-noising (see “De-Noising” on page 6-101).

4 Reconstruct an estimate h1 of the density function h from the thresholded
wavelet coefficients using fast algorithm (see “Fast Wavelet Transform
(FWT) Algorithm” on page 6-19).

6-120

Wavelet Applications: More Detail

5 Postprocess the resulting function h1. Rescale the resulting function
transforming 1, 2, ..., nb into Xb and interpolate h1 for each bin to calculate
hest(X).

Steps 2 to 4 are standard wavelet-based steps. But the first step of this
estimation scheme depends on nb (the number of bins), which can be viewed
as a bandwidth parameter. In density estimation, nb is generally small with
respect to the number of observations (equal to the length of X), since the
binning step is a presmoother. A typical default value is nb = length(X) / 4.

For more information, you can refer for example to [AntP98], [HarKPT98],
and [Ogd97] in “References” on page 6-168.

A More Technical Viewpoint.

Let us be a little more formal.

Let X1, X2, ... , Xn be a sequence of independent and identically distributed
random variables, with a common density function h = h(x).

This density h is unknown and we want to estimate it. We have very little
information on h.

For technical reasons we suppose that h x dx()2∫ is finite. This allows us to
express h in the wavelet basis.

We know that in the basis of functions φ and ψ with usual notations, J being
an integer,

h x a d A DJ k J k j k j k J
kj

J

k j

J
() ., , , ,= + = +∑∑∑ ∑

=−∞ =−∞
φ ψ

The estimator ĥ = ĥ(x) will use some wavelet coefficients. The rationale for
the estimator is the following.

To estimate h, it is sufficient to estimate the coordinates aJ,k and the dj,k.

We shall do it now.

6-121

6 Advanced Concepts

We know the definition of the coefficients:

a x h x dxJ k J k, , () ()= ∫φ

and similarly

d x h x dxj k j k, , () ()= ∫ψ

The expression of the aJ,k has a very funny interpretation. Because h is

a density φJ k x h x dx, () ()∫ is E XJ k iφ , ()() , the mean value of the random
variable φJ k iX, () .

Usually such an expectation is estimated very simply by the mean value:

ˆ (), ,a
n

XJ k J k i
i

n
=

=
∑1

1
φ

Of course the same kind of formula holds true for the dj,k:

ˆ (), ,d
n

Xj k j k i
i

n
=

=
∑1

1
ψ

With a finite set of n observations, it is possible to estimate only a finite set
of coefficients, those belonging to the levels from J–j0 up to J, and to some
positions k.

Besides, several values of the dj,k are not significant and are to be set to 0.

The values dj,k, lower than a threshold t, are set to 0 in a very similar manner
as the de-noising process and for almost the same reasons.

Inserting these expressions into the definition of h, we get an estimator:

6-122

Wavelet Applications: More Detail

ˆ ˆ ˆ
, , , { ˆ } ,

,
h a dJ k J k

k
j k

kj J j

J

d t j k
j k

= +∑ ∑∑
= −

>
φ ψ

0

1

This kind of estimator avoids the oscillations that would occur if all the detail
coefficients would have been kept.

From the computational viewpoint, it is difficult to use a quick algorithm
because the Xi values are not equally spaced.

Note that this problem can be overcome.

Let’s introduce the normalized histogram Ĥ of the values of X, having nb
classes, where the centers of the bins are collected in a vector Xb, the
frequencies of Xi within the bins are collected in a vector Yb and then

ˆ ()
()

H x
Yb r

n
= on the r-th bin

We can write, using Ĥ,

ˆ () () (()) () ˆ (, , , ,d
n

X
n

Yb r Xb r c x Hj k j k
i

n

i j k
r

nb

j k= = =
= =
∑ ∑1 1

1 1
ψ ψ ψ xx dx)∫

where
1
c
is the length of each bin.

The signs ≈ occur because we lose some information when using histogram
instead of the values Xi and when approximating the integral.

The last = sign is very interesting. It means that ˆ
,dj k is, up to the constant c,

the wavelet coefficient of the function Ĥ associated with the level j and the
position k. The same result holds true for the âJ,k.

So, the last = sign of the previous equation shows that the coefficients ˆ
,dj k

appear also to be (up to an approximation) wavelet coefficients — those of

6-123

6 Advanced Concepts

the decomposition of the sequence Ĥ. If some of the coefficients at level J
are known or computed, the Mallat algorithm computes the others quickly
and simply.

And now we are able to finish computing ĥ when the ˆ
,dj k and the âJ,k have

been computed.

The trick is the transformation of irregularly spaced X values into equally
spaced values by a process similar to the histogram computation, and that
is called binning.

You can see the different steps of the procedure using the Density Estimation
Graphical User Interface, by typing

wavemenu

and clicking the Density Estimation 1-D option.

Regression Estimation

What Is Regression.

The regression problem belongs to the family of the most common practical
questions. The goal is to get a model of the relationship between one variable
Y and one or more variables X. The model gives the part of the variability of Y
taken in account or explained by the variation of X. A function f represents
the central part of the knowledge. The remaining part is dedicated to the
residuals, which are similar to a noise. The model is Y = f(X) + e.

Regression Models.

The simplest case is the linear regression Y = aX + b + e where the function f
is affine. A case a little more complicated occurs when the function belongs to
a family of parametrized functions as f(X) = cos(wX), the value of w being
unknown. Statistics Toolbox™ software provides tools for the study of such
models. When f is totally unknown, the problem of the nonlinear regression is
said to be a nonparametric problem and can be solved either by using usual
statistical window techniques or by wavelet based methods.

6-124

Wavelet Applications: More Detail

Regression Applications.

These regression questions occur in many domains. For example:

• Metallurgy, where you can try to explain the tensile strength by the carbon
content

• Marketing, where the house price evolution is connected to an economical
index

• Air-pollution studies, where you can explain the daily maximum of the
ozone concentration by the daily maximum of the temperature

Two designs are distinguished: the fixed design and the stochastic design.
The difference concerns the status of X.

Fixed-Design Regression.

When the X values are chosen by the designer using a predefined scheme,
as the days of the week, the age of the product, or the degree of humidity,
the design is a fixed design. Usually in this case, the resulting X values
are equally spaced. When X represents time, the regression problem can
be viewed as a de-noising problem.

Stochastic Design Regression.

When the X values result from a measurement process or are randomly
chosen, the design is stochastic. The values are often not regularly spaced.
This framework is more general since it includes the analysis of the
relationship between a variable Y and a general variable X, as well as the
analysis of the evolution of Y as a function of time X when X is randomized.

How to Perform Wavelet-Based Regression Estimation.

The key idea is to reduce a general problem of regression to a fixed-design
regression model. More precisely the main steps are as follows:

1 Transform (X,Y) data into (Xb,Yb) data where the Xb are equally spaced,
using a binning procedure. For each bin i,

6-125

6 Advanced Concepts

(())
{ () () }

{ ()
Yb i

sum Y j X j i
number Y j

= such that lies in bin
 ssuch that lies in bin X j i() }

,

with the convention
0
0

0= .

2 Perform a wavelet decomposition of Yb viewed as a signal using fast
algorithm. This last sentence means that the underlying Xb data is
1, 2, ..., nb where nb is the number of bins.

3 Threshold the wavelet coefficients according to one of the methods
described for de-noising.

4 Reconstruct an estimate f1 of the function f from the thresholded wavelet
coefficients using fast algorithm.

5 Post-process the resulting function f1. Rescale the resulting function f1
transforming 1, 2, ..., nb onto Xb and interpolate f1 for each bin in order
to calculate fest(x).

Steps 2 to 4 are standard wavelet-based steps. But the first step of this
estimation scheme depends on the number of bins, which can be viewed as a
bandwidth parameter. Generally, the value of nb is not chosen too small with
respect to the number of observations, since the binning step is a presmoother.

For more information, you can refer for example to [AntP98], [HarKPT98],
and [Ogd97]. See “References” on page 6-168.

A More Technical Viewpoint.

The regression problem goes along the same lines as the density estimation.
The main differences, of course, concern the model.

There is another difference with the density step: we have here two variables
X and Y instead of one in the density scheme.

The regression model is Y f Xi i i= + ∈() where ()∈ ≤ ≤i i n1 is a sequence of
independent and identically distributed (i.i.d.) random variables and where
the (Xi) are randomly generated according to an unknown density h.

6-126

Wavelet Applications: More Detail

Also, let us assume that (X1,Y1), ..., (Xn,Yn) is a sequence of i.i.d. random
variables.

The function f is unknown and we look for an estimator f̂ .

We introduce the function g = f· h. So f
g
h

= with the convention 0
0
0

= .

We could estimate g by a certain ĝ and, from the density part, an ĥ, and

then use
ˆ ˆ

ˆf
g

h
= . We choose to use the estimate of h given by the histogram

suitably normalized.

Let us bin the X-values into nb bins. The l-th bin-center is called Xb(l), the
number of X-values belonging to this bin is n(l). Then, we define Yb(l) by
the sum of the Y-values within the bin divided by n(l).

Let’s turn to the f estimator. We shall apply the technique used for the density
function. The coefficients of f, are estimated by

ˆ ()

ˆ ()

, ,

, ,

d
n

Y X

a
n

Y X

j k i
i

n

j k i

J k i
i

n

J k i

=

=

=

=

∑

∑

1

1

1

1

ψ

φ

We get approximations of the coefficients by the following formula that can
be written in a form proving that the approximated coefficients are also the
wavelet decomposition coefficients of the sequence Yb:

ˆ () (())

ˆ () ((

, ,

, ,

d
n

Yb l Xb l

a
n

Yb l Xb l

j k
l

nb

j k

J k
l

nb

J k

=

=

=

=

∑

∑

1

1

1

1

ψ

φ)))

6-127

6 Advanced Concepts

The usual simple algorithms can be used.

You can see the different steps of the procedure using the Regression
Estimation Graphical User Interface by typing wavemenu, and clicking the
Regression Estimation 1-D option.

Available Methods for De-Noising, Estimation, and
Compression Using GUI Tools
This section presents the predefined strategies available using the de-noising,
estimation, and compression GUI tools.

One-Dimensional DWT and SWT De-Noising
Level-dependent or interval-dependent thresholding methods are available.
Predefined thresholding strategies:

• Hard or soft (default) thresholding

• Scaled white noise, unscaled white noise (default) or nonwhite noise

• Thresholds values are

- Donoho-Johnstone methods: Fixed-form (default), Heursure, Rigsure,
Minimax

- Birgé-Massart method: Penalized high, Penalized medium, Penalized
low

The last three choices include a sparsity parameter a (a > 1).

Using this strategy the defaults are a = 6.25, 2, and 1.5, respectively,
and the thresholding mode is hard. Only scaled and unscaled white
noise options are supported.

One-Dimensional DWT Compression

1 Level-dependent or interval-dependent hard thresholding methods are
available. Predefined thresholding strategies are:

• Birgé-Massart method: Scarce high (default), Scarce medium, Scarce low

6-128

Wavelet Applications: More Detail

This method includes a sparsity parameter a (1 < a < 5). Using this
strategy the default is a = 1.5.

• Empirical methods

- Equal balance sparsity-norm

- Remove near 0

2 Global hard thresholding methods with GUI-driven choice are available.
Predefined thresholding strategies are:

• Empirical methods

- Balance sparsity-norm (default = equal)

- Remove near 0

Two-Dimensional DWT and SWT De-Noising
Level-dependent and orientation-dependent (horizontal, vertical, and
diagonal) thresholding methods are available. Predefined thresholding
strategies are:

• Hard or soft (default) thresholding

• Scaled white noise, unscaled white noise (default) or nonwhite noise

• Thresholds values are:

- Donoho-Johnstone method: Fixed form (default)

- Birgé-Massart method: Penalized high, Penalized medium, Penalized
low

The last three choices include a sparsity parameter a (a > 1). See
“One-Dimensional DWT and SWT De-Noising” on page 6-128.

- Empirical method: Balance sparsity-norm, default = sqrt

Two-Dimensional DWT Compression
Level-dependent and orientation-dependent (horizontal, vertical, and
diagonal) thresholding methods are available.

1 Level-dependent or interval-dependent hard thresholding methods are
available. Predefined thresholding strategies are:

6-129

6 Advanced Concepts

• Birgé-Massart method: Scarce high (default); Scarce medium, Scarce low

This method includes a sparsity parameter a (1 < a < 5), the default is
a = 1.5.

• Empirical methods

- Equal balance sparsity-norm

- Square root of the threshold associated with Equal balance
sparsity-norm

- Remove near 0

2 Global hard thresholding methods with GUI-driven choice are available.
Predefined thresholding strategies are:

• Empirical methods

- Balance sparsity-norm (default = equal); Balance sparsity-norm (sqrt)

- Remove near 0

One-Dimensional Wavelet Packet De-Noising
Global thresholding methods with GUI-driven choice are available.
Predefined thresholding strategies are:

• Hard or soft (default) thresholding

• Thresholds values:

- Donoho-Johnstone methods: Fixed form (unscaled noise) (default); Fixed
form (scaled noise)

- Birgé-Massart method: Penalized high, Penalized medium, Penalized
low

This method includes a sparsity parameter a (a > 1). See
“One-Dimensional DWT and SWT De-Noising” on page 6-128.

One-Dimensional Wavelet Packet Compression
Global hard thresholding methods with GUI-driven choice are available.
Predefined thresholding strategies are:

• Empirical methods

6-130

Wavelet Applications: More Detail

- Balance sparsity-norm (default = equal)

- Remove near 0

Two-Dimensional Wavelet Packet De-Noising
Global thresholding methods with GUI-driven choice are available.
Predefined thresholding strategies are:

• Hard or soft (default) thresholding

• Thresholds values:

- Donoho-Johnstone methods: Fixed form (unscaled noise) (default); Fixed
form (scaled noise)

- Birgé-Massart method: Penalized high, Penalized medium, Penalized
low

The last three choices include a sparsity parameter a (a > 1). See
“One-Dimensional DWT and SWT De-Noising” on page 6-128.

- Empirical method: Balance sparsity-norm (sqrt)

Two-Dimensional Wavelet Packet Compression
Global thresholding methods with GUI-driven choice are available.
Predefined thresholding strategies are:

• Empirical methods

- Balance sparsity-norm (default = equal), Balance sparsity-norm (sqrt)

- Remove near 0

One-Dimensional Regression Estimation
A preliminary histogram estimator (binning) is used, and then the predefined
thresholding strategies described in “One-Dimensional DWT and SWT
De-Noising” on page 6-128 are available.

Density Estimation
A preliminary histogram estimator (binning) is used, and then the predefined
thresholding strategies are as follows:

6-131

6 Advanced Concepts

• Global threshold

• By level threshold 1, By level threshold 2, By level threshold 3

The last choice includes a sparsity parameter a (a < 1); the default is 0.6.

More About the Thresholding Strategies
A lot of references are available for this topic of de-noising, estimation, and
compression.

For example, [Ant94], [AntP98], [HalPKP97], [AntG99], [Ogd97], [HarKPT98],
[DonJ94a&b], [DonJKP95], and [DonJKP96] (see “References” on page 6-168).
A short description of the available methods previously mentioned follows.

Scarce High, Medium, and Low.

These strategies are based on an approximation result from Birgé and Massart
(for more information, see [BirM97]) and are well suited for compression.

Three parameters characterize the strategy:

• J, the level of the decomposition

• M, a positive constant

• a, a sparsity parameter (a > 1)

The strategy is such that:

• At level J the approximation is kept

• For level j from 1 to J, the nj largest coefficients are kept with

n
M

J j
j a
=

+ −()2

So the strategy leads to select the highest coefficients in absolute value at
each level, the numbers of kept coefficients grow scarcely with J – j.

Typically, a = 1.5 for compression and a = 3 for de-noising.

6-132

Wavelet Applications: More Detail

A natural default value for M is the length of the coarsest approximation
coefficients, since the previous formula for j = J + 1, leads to M = nJ+1.

Let L denote the length of the coarsest approximation coefficients in the 1-D
case and S the size of the coarsest approximation coefficients in the 2-D case.

Three different choices for M are proposed:

• Scarce high:

- M = L in the 1-D case

- M = 4*prod(S) in the 2-D case

• Scarce medium:

- M = 1.5*L in the 1-D case

- M = 4*4*prod(S) / 3 in the 2-D case

• Scarce low:

- M = 2*L in the 1-D case

- M = 4*8*prod(S) / 3 in the 2-D case

The related files are wdcbm, wdcbm2, and wthrmngr (for more information, see
the corresponding reference pages).

Penalized High, Medium, and Low.

These strategies are based on a recent de-noising result by Birgé and Massart,
and can be viewed as a variant of the fixed form strategy (see “De-Noising” on
page 6-101) of the wavelet shrinkage.

The threshold T applied to the detail coefficients for the wavelet case or the
wavelet packet coefficients for a given fixed WP tree, is defined by

T c t= (*)

with

6-133

6 Advanced Concepts

t sum c k k t vt a
n
t

t n* arg min { (), } log ; ,...,= − < + + ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=
⎡ 2 2 1
⎣⎣
⎢

⎤

⎦
⎥

where

• The sparsity parameter a > 1

• The coefficients c(k) are sorted in decreasing order of their absolute value

• v is the noise variance

Three different intervals of choices for the sparsity parameter a are proposed:

• Penalized high, 2.5 ≤ a < 10

• Penalized medium, 1.5 < a < 2.5

• Penalized low, 1 < a < 2

The related files are wbmpen, wpbmpen, and wthrmngr (for more information,
see the corresponding reference pages).

Remove Near 0.

Let c denote the detail coefficients at level 1 obtained from the decomposition
of the signal or the image to be compressed, using db1. The threshold value is
set to median(abs(c)) or to 0.05*max(abs(c)) if median(abs(c)) = 0.

The related files are ddencmp and wthrmngr (for more information, see the
corresponding reference pages).

Balance Sparsity-Norm.

Let c denote all the detail coefficients; two curves are built associating, for
each possible threshold value t, two percentages:

• The 2-norm recovery in percentage

• The relative sparsity in percentage, obtained from the compressed signal
by setting to 0 the coefficients less than t in absolute value

6-134

Wavelet Applications: More Detail

A default is provided for the 1-D case taking t such that the two percentages
are equal. Another one is obtained for the 2-D case by taking the square
root of the previous t.

The related file is wthrmngr (for more information, see the corresponding
reference page).

Fixed Form.

This thresholding strategy comes from Donoho-Johnstone (see “References”
on page 6-168 and the 'sqtwolog' option of the wden function in “De-Noising”
on page 6-101). The universal threshold is of the following form:

• DWT or SWT 1-D, t s n= 2log() where n is the signal length and s is the
noise standard deviation

• DWT or SWT 2-D, t s nm= 2log() where [n,m] is the image size

• WP 1-D, t s n n= 2 2log(log() / (log()))

• WP 2-D, t s nm nm= 2 2log(log() / (log()))

The related files are ddencmp, thselect, wden, wdencmp, and wthrmngr (for
more information, see the corresponding reference pages).

Heursure, Rigsure, and Minimax. These methods are available for 1-D
de-noising tools and come from Donoho-Johnstone (see “References” on page
6-168).

The related files are thselect, wden, wdencmp, and wthrmngr (for more
information, see the corresponding reference pages).

Global, and By Level 1, 2, 3. These options are dedicated to the density
estimation problem.

See [HalPKP97], [AntG99], [Ogd97], and [HarKPT98] in “References” on
page 6-168 for more details.

Note that:

6-135

6 Advanced Concepts

• c is all the detail coefficients of the binned data.

• d(j) is the detail coefficients at level j.

• n is the number of bins chosen for the preliminary estimator (binning).

Then, these options are defined as follows:

1 Global:

Threshold value is set to

max c
n

n
()

log()
.×

2 By level 1:

Level dependent thresholds T(j) are defined by 0 4. ()× ()max d j .

3 By level 2:

Level dependent thresholds T(j) are defined by 0 8. ()× ()max d j .

4 By level 3:

Level dependent thresholds T(j) are defined by a max d j× ()() ,

where a is a sparsity parameter (0 2 1 0 6. , .< ≤ =a a is the default).

True Compression for Images
In “Data Compression” on page 6-115, we addressed the aspects specifically
related to compression using wavelets. However, in addition to the algorithms
related to wavelets like DWT and IDWT, it is necessary to use other
ingredients concerning the quantization mode and the coding type in order to
deal with true compression.

This more complex process can be represented by the following figure.

6-136

Wavelet Applications: More Detail

Effects of Quantization
Let us show the effects of quantization on the visualization of the fingerprint
image. This indexed image corresponds to a matrix of integers ranging
between 0 and 255. Through quantization we can decrease the number of
colors which is here equal to 256.

The next figure illustrates how to decrease from 256 to 16 colors by working
on the values of the original image.

6-137

6 Advanced Concepts

We can see on this figure:

• At the top

- On the left: the original image

- On the right: the corresponding histogram of values

• At the bottom

- On the left: the reconstructed image

- On the right: the corresponding histogram of quantized values

This quantization leads to a compression of the image. Indeed, with a
fixed length binary code, 8 bits per pixel are needed to code 256 colors
and 4 bits per pixel to code 16 colors. We notice that the image obtained
after quantization is of good quality. However, within the framework of
true compression, quantization is not used on the original image, but on its
wavelet decomposition.

Let us decompose the fingerprint image at level 4 with the Haar wavelet. The
histogram of wavelet coefficients and the quantized histogram are normalized
so that the values vary between –1 and +1. The 15 intervals of quantization
do not have the same length.

6-138

Wavelet Applications: More Detail

The next figure illustrates how to decrease information by binning on the
wavelet coefficient values of the original image.

We can see on this figure:

• At the top

- On left: the original image

- On the right: the corresponding histogram (central part) of coefficient
values

• At the bottom

- On the left: the reconstructed image

- On the right: the corresponding histogram (central part) of quantized
coefficient values

The key point is that the histogram of the quantized coefficients is massively
concentrated in the class centered in 0. Let us note that yet again the image
obtained is of good quality.

6-139

6 Advanced Concepts

True Compression Methods
The basic ideas presented above are used by three methods which cascade
in a single step, coefficient thresholding (global or by level), and encoding
by quantization. Fixed or Huffman coding can be used for the quantization
depending on the method.

The following table summarizes these methods, often called Coefficients
Thresholding Methods (CTM), and gives the MATLAB name used by the true
compression tools for each of them.

MATLAB Name Compression Method Name

'gbl_mmc_f' Global thresholding of coefficients and fixed
encoding

'gbl_mmc_h' Global thresholding of coefficients and Huffman
encoding

'lvl_mmc' Subband thresholding of coefficients and Huffman
encoding

More sophisticated methods are available which combine wavelet
decomposition and quantization. This is the basic principle of progressive
methods.

On one hand, progressivity makes it possible during decoding to obtain an
image whose resolution increases gradually. In addition, it is possible to
obtain a set of compression ratios based on the length of the preserved code.
This compression usually involves a loss of information, but this kind of
algorithm enables also lossless compression.

Such methods are based on three ideas. The two first, already mentioned, are
the use of wavelet decomposition to ensure sparsity (a large number of zero
coefficients) and classical encoding methods. The third idea, decisive for the
use of wavelets in image compression, is to exploit fundamentally the tree
structure of the wavelet decomposition. Certain codes developed from 1993
to 2000 use this idea, in particular, the EZW coding algorithm introduced by
Shapiro. See [Sha93] in “References” on page 6-168.

EZW combines stepwise thresholding and progressive quantization, focusing
on the more efficient way to encode the image coefficients, in order to minimize

6-140

Wavelet Applications: More Detail

the compression ratio. Two variants SPIHT and STW (see the following table)
are refined versions of the seminal EZW algorithm.

Following a slightly different objective, WDR (and the refinement ASWDR)
focuses on the fact that in general some portions of a given image require
more refined coding leading to a better perceptual result even if there is
generally a small price to pay in terms of compression ratio.

A complete review of these progressive methods is in the Walker reference
[Wal99] in “References” on page 6-168.

The following table summarizes these methods, often called Progressive
Coefficients Significance Methods (PCSM), and gives the MATLAB coded
name used by the true compression tools for each of them.

MATLAB Name Compression Method Name

'ezw' Embedded Zerotree Wavelet

'spiht' Set Partitioning In Hierarchical Trees

'stw' Spatial-orientation Tree Wavelet

'wdr' Wavelet Difference Reduction

'aswdr' Adaptively Scanned Wavelet Difference Reduction

'spiht_3d' Set Partitioning In Hierarchical Trees 3D for
truecolor images

Quantitative and Perceptual Quality Measures
Let us close this section by defining two quantitative measures of the
compression performance as well as two measures of the perceptual quality.

Compression Performance.

Two quantitative measures giving equivalent information are commonly used
as a performance indicator for the compression:

• The compression ratio CR, which means that the compressed image is
stored using only CR% of the initial storage size.

6-141

6 Advanced Concepts

• The Bit-Per-Pixel ratio BPP, which gives the number of bits required to
store one pixel of the image.

Perceptual Quality.

Two measures are commonly used to evaluate the perceptual quality:

• The Mean Square Error (MSE). It represents the mean squared error
between the compressed and the original image and is given by:

MSE
mn

X i j X i jc
j

n

i

m
= −

=

=

=

=

∑∑1 2

0

1

0

1
(,) (,)

The lower the value of MSE, the lower the error.

• The Peak Signal to Noise Ratio (PSNR). It represents a measure of the
peak error and is expressed in decibels. It is defined by:

PSNR
MSE

= ⋅
⎛

⎝
⎜

⎞

⎠
⎟10

255
10

2
log

The higher the PSNR, the better the quality of the compressed or
reconstructed image. Typical values for lossy compression of an image are
between 30 and 50 dB and when the PSNR is greater than 40 dB, then the
two images are indistinguishable.

More Information on the True Compression
Various examples illustrating either the command-line mode or GUI tools for
true compression using wavelets are in “Two-Dimensional True Compression”
in the Wavelet Toolbox Getting Started Guide. More details on how to use the
main command-line function are in the Reference document (see wcompress).

More information on the true compression for images and more precisely
on the compression methods is in [Wal99], [Sha93], [Sai96], [StrN96], and
[Chr06]. See “References” on page 6-168.

6-142

Wavelet Packets

Wavelet Packets
The wavelet packet method is a generalization of wavelet decomposition that
offers a richer signal analysis.

Wavelet packet atoms are waveforms indexed by three naturally interpreted
parameters: position, scale (as in wavelet decomposition), and frequency.

For a given orthogonal wavelet function, we generate a library of bases called
wavelet packet bases. Each of these bases offers a particular way of coding
signals, preserving global energy, and reconstructing exact features. The
wavelet packets can be used for numerous expansions of a given signal. We
then select the most suitable decomposition of a given signal with respect to
an entropy-based criterion.

There exist simple and efficient algorithms for both wavelet packet
decomposition and optimal decomposition selection. We can then produce
adaptive filtering algorithms with direct applications in optimal signal coding
and data compression.

From Wavelets to Wavelet Packets: Decomposing
the Details
In the orthogonal wavelet decomposition procedure, the generic step splits the
approximation coefficients into two parts. After splitting we obtain a vector
of approximation coefficients and a vector of detail coefficients, both at a
coarser scale. The information lost between two successive approximations is
captured in the detail coefficients. Then the next step consists of splitting the
new approximation coefficient vector; successive details are never reanalyzed.

In the corresponding wavelet packet situation, each detail coefficient vector is
also decomposed into two parts using the same approach as in approximation
vector splitting. This offers the richest analysis: the complete binary tree is
produced as shown in the following figure.

6-143

6 Advanced Concepts

Wavelet Packet Decomposition Tree at Level 3

The idea of this decomposition is to start from a scale-oriented decomposition,
and then to analyze the obtained signals on frequency subbands.

Wavelet Packets in Action: An Introduction
The following simple examples illustrate certain differences between wavelet
analysis and wavelet packet analysis.

Example 1: Analyzing a Sine Function
The signal to be analyzed, called sinper8, is a 256-length sampled sine
function of period 8. The Haar wavelet is used to decompose the signal at
level 7.

The following figure contains the “time-frequency” plot (x-axis is time and
y-axis is frequency, high to low from the top to the bottom) for the wavelet
decomposition (on the left) and for the wavelet packet decomposition (on the
right).

Wavelet decomposition localizes the period of the sine within the interval
[8,16]. Wavelet packets provide a more precise estimation of the actual period.

How to Obtain and Explain These Graphs.

You can reproduce these graphs by typing at the MATLAB prompt

wavemenu

6-144

Wavelet Packets

Then click theWavelet Packet 1-D option and select the Example Analysis
using the sinper8 demo signal. For more information on using this GUI tool,
see “One-Dimensional Wavelet Packet Analysis” on page 3-7.

The length of the WP tree leaves is 2; there are 128 leaves, labeled from (7,0)
to (7,127) and indexed from 127 to 254.

The associated wavelet tree (click the Wavelet Tree button) is obviously
simpler than the wavelet packet tree. There are eight leaves labeled (7,0),
(7,1), (6,1), . . . (2,1), (1,1).

The Colored Coefficients for Terminal Nodes graph deserves explanation.
In principle the graphic displays eight stripes. When using Global + abs,
only four seem to be present. In fact, the eight are drawn. As the values of
several coefficients are close to 0, the stripes are merged and only four can be
seen. The eight stripes are recovered when using the option By level + abs.

Getting back to the Colored Coefficients for Terminal Nodes graph of the
initial tree, with cool colormap, two stripes are present. By zooming in, we
determine their WP index or position:

• Stripe 1: index 175 or position (7,48) and index 143 or position (7,16)

• Stripe 2: index 207 or position (7,80) and index 239 or position (7,112)

Using the two sliders of the Decomposition Tree graphic, we can visualize
the coefficients or the reconstructed signals corresponding to these four leaves.

6-145

6 Advanced Concepts

Wavelets (Left) Versus Wavelet Packets (Right): A Sine Function

Example 2: Analyzing a Chirp Signal
The signal to be analyzed is a chirp: an oscillatory signal with increasing
modulation sin (250πt2) sampled 512 times on [0, 1]. For this “linear” chirp,
the derivative of the phase is linear. On the left of Wavelets (Left) Versus
Wavelet Packets (Right): Damped Oscillations on page 6-147, a wavelet
analysis does not easily detect this time-frequency property of the signal. But

6-146

Wavelet Packets

on the right of this figure, the linear slope for the greatest wavelet packet
coefficients in absolute value is obvious. The same experiment can be done
with a “quadratic” chirp of the form sin (kπt3) in which the greatest wavelet
packet coefficients exhibit a quadratic time frequency pattern.

Wavelets (Left) Versus Wavelet Packets (Right): Damped Oscillations

Wavelet Packet Spectrum
The spectral analysis of wide-sense stationary signals using the Fourier
transform is well-established. For nonstationary signals, there exist local
Fourier methods such as the short-time Fourier transform (STFT). See
“Short-Time Fourier Transform” for a brief description.

6-147

6 Advanced Concepts

Because wavelets are localized in time and frequency, it is possible to use
wavelet-based counterparts to the STFT for the time-frequency analysis of
nonstationary signals. For example, it is possible to construct the scalogram
(wscalogram) based on the continuous wavelet transform (CWT). However, a
potential drawback of using the CWT is that it is computationally expensive.

The discrete wavelet transform (DWT) permits a time-frequency
decomposition of the input signal, but the degree of frequency resolution in the
DWT is typically considered too coarse for practical time-frequency analysis.

As a compromise between the DWT- and CWT-based techniques, wavelet
packets provide a computationally-efficient alternative with sufficient
frequency resolution. You can use wpspectrum to perform a time-frequency
analysis of your signal using wavelet packets.

The following examples illustrate the use of wavelet packets to perform a local
spectral analysis. The following examples also use spectrogram from the
Signal Processing Toolbox software as a benchmark to compare against the
wavelet packet spectrum. If you do not have the Signal Processing Toolbox
software, you can simply run the wavelet packet spectrum examples.

Wavelet packet spectrum of a sine wave.

fs = 1000; % sampling rate
t = 0:1/fs:2; % 2 secs at 1kHz sample rate
y = sin(256*pi*t); % sine of period 128
level = 6;
wpt = wpdec(y,level,'sym8');
[Spec,Time,Freq] = wpspectrum(wpt,fs,'plot');

If you have the Signal Processing Toolbox software, you can compute the
short-time Fourier transform.

figure;
windowsize = 128;
window = hanning(windowsize);
nfft = windowsize;
noverlap = windowsize-1;
[S,F,T] = spectrogram(y,window,noverlap,nfft,fs);
imagesc(T,F,log10(abs(S)))
set(gca,'YDir','Normal')

6-148

Wavelet Packets

xlabel('Time (secs)')
ylabel('Freq (Hz)')
title('Short-time Fourier Transform spectrum')

Sum of two sine waves with frequencies of 64 and 128 hertz.

fs = 1000;
t = 0:1/fs:2;
y = sin(128*pi*t) + sin(256*pi*t); % sine of periods 64 and 128.
level = 6;
wpt = wpdec(y,level,'sym8');
[Spec,Time,Freq] = wpspectrum(wpt,fs,'plot');

If you have the Signal Processing Toolbox software, you can compute the
short-time Fourier transform.

figure;
windowsize = 128;
window = hanning(windowsize);
nfft = windowsize;
noverlap = windowsize-1;
[S,F,T] = spectrogram(y,window,noverlap,nfft,fs);
imagesc(T,F,log10(abs(S)))
set(gca,'YDir','Normal')
xlabel('Time (secs)')
ylabel('Freq (Hz)')
title('Short-time Fourier Transform spectrum')

Signal with an abrupt change in frequency from 16 to 64 hertz at two seconds.

fs = 500;
t = 0:1/fs:4;
y = sin(32*pi*t).*(t<2) + sin(128*pi*t).*(t>=2);
level = 6;
wpt = wpdec(y,level,'sym8');
[Spec,Time,Freq] = wpspectrum(wpt,fs,'plot');

6-149

6 Advanced Concepts

If you have the Signal Processing Toolbox software, you can compute the
short-time Fourier transform.

figure;
windowsize = 128;
window = hanning(windowsize);
nfft = windowsize;
noverlap = windowsize-1;
[S,F,T] = spectrogram(y,window,noverlap,nfft,fs);
imagesc(T,F,log10(abs(S)))
set(gca,'YDir','Normal')
xlabel('Time (secs)')
ylabel('Freq (Hz)')
title('Short-time Fourier Transform spectrum')

Wavelet packet spectrum of a linear chirp.

fs = 1000;
t = 0:1/fs:2;
y = sin(256*pi*t.^2);
level = 6;
wpt = wpdec(y,level,'sym8');
[Spec,Time,Freq] = wpspectrum(wpt,fs,'plot');

If you have the Signal Processing Toolbox software, you can compute the
short-time Fourier transform.

figure;
windowsize = 128;
window = hanning(windowsize);
nfft = windowsize;
noverlap = windowsize-1;
[S,F,T] = spectrogram(y,window,noverlap,nfft,fs);
imagesc(T,F,log10(abs(S)))
set(gca,'YDir','Normal')
xlabel('Time (secs)')
ylabel('Freq (Hz)')
title('Short-time Fourier Transform spectrum')

6-150

Wavelet Packets

Wavelet packet spectrum of quadratic chirp.

y = wnoise('quadchirp',10);
len = length(y);
t = linspace(0,5,len);
fs = 1/t(2);
level = 6;
wpt = wpdec(y,level,'sym8');
[Spec,Time,Freq] = wpspectrum(wpt,fs,'plot');

If you have the Signal Processing Toolbox software, you can compute the
short-time Fourier transform.

windowsize = 128;
window = hanning(windowsize);
nfft = windowsize;
noverlap = windowsize-1;
imagesc(T,F,log10(abs(S)))
set(gca,'YDir','Normal')
xlabel('Time (secs)')
ylabel('Freq (Hz)')
title('Short-time Fourier Transform spectrum')

Building Wavelet Packets
The computation scheme for wavelet packets generation is easy when using
an orthogonal wavelet. We start with the two filters of length 2N, where h(n)
and g(n), corresponding to the wavelet.

Now by induction let us define the following sequence of functions:

(Wn(x), n = 0, 1, 2, ...)

by

W x h k W x kn n
k

N

2
0

2 1
2 2() () ()= −

=

−

∑

6-151

6 Advanced Concepts

W x g k W x kn n
k

N

2 1
0

2 1
2 2+

=

−
= −∑() () ()

where W0(x) = φ(x) is the scaling function and W1(x) = ψ(x) is the wavelet
function.

For example for the Haar wavelet we have

N h h= = =1 0 1
1

2
, () ()

and

g g() ()0 1
1

2
= − =

The equations become

W x W x W xn n n2 2 2 1() () ()= + −

and

W x W x W xn n n2 1 2 2 1+ = − −() () ()

W0(x) = φ(x) is the Haar scaling function and W1(x) = ψ(x) is the Haar
wavelet, both supported in [0, 1]. Then we can obtain W2n by adding two
1/2-scaled versions of Wn with distinct supports [0,1/2] and [1/2,1] and obtain
W2n+1 by subtracting the same versions of Wn.

For n = 0 to 7, we have the W-functions shown in the figure Haar Wavelet
Packets on page 6-153.

6-152

Wavelet Packets

Haar Wavelet Packets

This can be obtained using the following command:

[wfun,xgrid] = wpfun('db1',7,5);

which returns in wfun the approximate values of Wn for n = 0 to 7, computed
on a 1/25 grid of the support xgrid.

Starting from more regular original wavelets and using a similar construction,
we obtain smoothed versions of this system of W-functions, all with support in
the interval [0, 2N–1]. The figure db2 Wavelet Packets on page 6-154 presents
the system of W-functions for the original db2 wavelet.

6-153

6 Advanced Concepts

db2 Wavelet Packets

Wavelet Packet Atoms
Starting from the functions ((),)W x n Nn ∈ and following the same line leading
to orthogonal wavelets, we consider the three-indexed family of analyzing
functions (the waveforms):

(() (), ,
/W x W x kj n k

j
n

j= −− −2 22

where n N and (j,k) Z2.

As in the wavelet framework, k can be interpreted as a time-localization
parameter and j as a scale parameter. So what is the interpretation of n?

The basic idea of the wavelet packets is that for fixed values of j and k, Wj,n,k
analyzes the fluctuations of the signal roughly around the position 2j· k, at

6-154

Wavelet Packets

the scale 2j and at various frequencies for the different admissible values of
the last parameter n.

In fact, examining carefully the wavelet packets displayed in Haar Wavelet
Packets on page 6-153 and db2 Wavelet Packets on page 6-154, the naturally
ordered Wn for n = 0, 1, ..., 7, does not match exactly the order defined by the
number of oscillations. More precisely, counting the number of zero crossings
(up-crossings and down-crossings) for the db1 wavelet packets, we have the
following.

Natural order n 0 1 2 3 4 5 6 7

Number of zero
crossings for db1 Wn

2 3 5 4 9 8 6 7

So, to restore the property that the main frequency increases monotonically
with the order, it is convenient to define the frequency order obtained from
the natural one recursively.

Natural order n 0 1 2 3 4 5 6 7

Frequency order r(n) 0 1 3 2 6 7 5 4

As can be seen in the previous figures, Wr(n)(x) “oscillates” approximately
n times.

To analyze a signal (the chirp of Example 2 for instance), it is better to plot the
wavelet packet coefficients following the frequency order (on the right of the
figure Natural and Frequency Ordered Wavelet Packets Coefficients on page
6-156) from the low frequencies at the bottom to the high frequencies at the
top, rather than naturally ordered coefficients (on the left of this same figure).

6-155

6 Advanced Concepts

Natural and Frequency Ordered Wavelet Packets Coefficients

When plotting the coefficients, the various options related to the “Frequency”
or “Natural” order choice are available using the GUI tools.

These options are also available from command-line mode when using the
wpviewcf function.

Organizing the Wavelet Packets
The set of functions Wj,n = (Wj,n,k(x), k Z) is the (j,n) wavelet packet. For
positive values of integers j and n, wavelet packets are organized in trees. The
tree in the figure Wavelet Packets Organized in a Tree; Scale j Defines Depth
and Frequency n Defines Position in the Tree on page 6-157 is created to give
a maximum level decomposition equal to 3. For each scale j, the possible
values of parameter n are 0, 1, ..., 2 j–1.

6-156

Wavelet Packets

Wavelet Packets Organized in a Tree; Scale j Defines Depth and Frequency n
Defines Position in the Tree

The notation Wj,n, where j denotes scale parameter and n the frequency
parameter, is consistent with the usual depth-position tree labeling.

We have W x k k Z0 0, ((),)= − ∈φ , and W
x

k k Z1 1 2, ((),)= − ∈ψ .

It turns out that the library of wavelet packet bases contains the wavelet
basis and also several other bases. Let us have a look at some of those bases.
More precisely, let V0 denote the space (spanned by the family W0,0) in which
the signal to be analyzed lies; then (Wd,1; d ≥ 1) is an orthogonal basis of V0.

For every strictly positive integer D, (WD,0, (Wd,1; 1 ≤ d ≤ D)) is an orthogonal
basis of V0.

We also know that the family of functions {(Wj+1,2n), (Wj+1,2n+1)} is an orthogonal
basis of the space spanned by Wj,n, which is split into two subspaces: Wj+1,2n
spans the first subspace, and Wj+1,2n+1 the second one.

This last property gives a precise interpretation of splitting in the wavelet
packet organization tree, because all the developed nodes are of the form
shown in the figure Wavelet Packet Tree: Split and Merge on page 6-158.

6-157

6 Advanced Concepts

Wavelet Packet Tree: Split and Merge

It follows that the leaves of every connected binary subtree of the complete
tree correspond to an orthogonal basis of the initial space.

For a finite energy signal belonging to V0, any wavelet packet basis will
provide exact reconstruction and offer a specific way of coding the signal,
using information allocation in frequency scale subbands.

Choosing the Optimal Decomposition
Based on the organization of the wavelet packet library, it is natural to count
the decompositions issued from a given orthogonal wavelet.

A signal of length N = 2L can be expanded in α different ways, where α is the
number of binary subtrees of a complete binary tree of depth L. As a result,

α ≥ 2 2N / (see [Mal98] page 323).

As this number may be very large, and since explicit enumeration is generally
unmanageable, it is interesting to find an optimal decomposition with respect
to a convenient criterion, computable by an efficient algorithm. We are
looking for a minimum of the criterion.

Functions verifying an additivity-type property are well suited for
efficient searching of binary-tree structures and the fundamental splitting.
Classical entropy-based criteria match these conditions and describe
information-related properties for an accurate representation of a given
signal. Entropy is a common concept in many fields, mainly in signal
processing. Let us list four different entropy criteria (see [CoiW92]); many
others are available and can be easily integrated (type help wentropy). In
the following expressions s is the signal and (si) are the coefficients of s in
an orthonormal basis.

The entropy E must be an additive cost function such that E(0) = 0 and

6-158

Wavelet Packets

E s E sii
() ()= ∑

• The (nonnormalized) Shannon entropy

E s s si i i1 2 2() log()= −

so

E s s si ii
1 2 2() log()= −∑

with the convention 0log(0) = 0.

• The concentration in lp norm with 1 ℜ ≤ p

E s si i
p2() =

so

E s s si
p

i p
p2() = =∑

• The logarithm of the “energy” entropy

E s si i3 2() log()=

so

E s sii
3 2() log()= ∑

with the convention log(0) = 0.

• The threshold entropy

E si4 1() = if si > ε and 0 elsewhere, so E4(s) = # {i such that si > ε } is
the number of time instants when the signal is greater than a threshold ε.

These entropy functions are available using the wentropy file.

6-159

6 Advanced Concepts

Example 1: Compute Various Entropies.

1 Generate a signal of energy equal to 1.

s = ones(1,16)*0.25;

2 Compute the Shannon entropy of s.

e1 = wentropy(s,'shannon')
e1 = 2.7726

3 Compute the l1.5 entropy of s, equivalent to norm(s,1.5)1.5.

e2 = wentropy(s,'norm',1.5)
e2 = 2

4 Compute the “log energy” entropy of s.

e3 = wentropy(s,'log energy')
e3 = -44.3614

5 Compute the threshold entropy of s, using a threshold value of 0.24.

e4 = wentropy(s,'threshold', 0.24)
e4 = 16

Example 2: Minimum-Entropy Decomposition.

This simple example illustrates the use of entropy to determine whether a
new splitting is of interest to obtain a minimum-entropy decomposition.

1 We start with a constant original signal. Two pieces of information are
sufficient to define and to recover the signal (i.e., length and constant
value).

w00 = ones(1,16)*0.25;

2 Compute entropy of original signal.

e00 = wentropy(w00,'shannon')
e00 = 2.7726

6-160

Wavelet Packets

3 Then split w00 using the haar wavelet.

[w10,w11] = dwt(w00,'db1');

4 Compute entropy of approximation at level 1.

e10 = wentropy(w10,'shannon')
e10 = 2.0794

The detail of level 1, w11, is zero; the entropy e11 is zero. Due to
the additivity property the entropy of decomposition is given by
e10+e11=2.0794. This has to be compared to the initial entropy
e00=2.7726. We have e10 + e11 < e00, so the splitting is interesting.

5 Now split w10 (not w11 because the splitting of a null vector is without
interest since the entropy is zero).

[w20,w21] = dwt(w10,'db1');

6 We have w20=0.5*ones(1,4) and w21 is zero. The entropy of the
approximation level 2 is

e20 = wentropy(w20,'shannon')
e20 = 1.3863

Again we have e20 + 0 < e10, so splitting makes the entropy decrease.

7 Then

[w30,w31] = dwt(w20,'db1');
e30 = wentropy(w30,'shannon')

e30 = 0.6931

[w40,w41] = dwt(w30,'db1')
w40 = 1.0000
w41 = 0

e40 = wentropy(w40,'shannon')
e40 = 0

6-161

6 Advanced Concepts

In the last splitting operation we find that only one piece of information
is needed to reconstruct the original signal. The wavelet basis at level 4
is a best basis according to Shannon entropy (with null optimal entropy
since e40+e41+e31+e21+e11 = 0).

8 Perform wavelet packets decomposition of the signal s defined in example 1.

t = wpdec(s,4,'haar','shannon');

The wavelet packet tree in Entropy Values on page 6-162 shows the nodes
labeled with original entropy numbers.

Entropy Values

9 Compute the best tree.

bt = besttree(t);

The best tree is shown in the following figure. In this case, the best tree
corresponds to the wavelet tree. The nodes are labeled with optimal
entropy.

6-162

Wavelet Packets

Optimal Entropy Values

Some Interesting Subtrees
Using wavelet packets requires tree-related actions and labeling. The
implementation of the user interface is built around this consideration. For
more information on the technical details, see the reference pages.

The complete binary tree of depth D corresponding to a wavelet packet
decomposition tree developed at level D is denoted by WPT.

We have the following interesting subtrees.

Decomposition Tree Subtree Such That the Set of Leaves Is a Basis

Wavelet packets decomposition tree Complete binary tree: WPT of depth D

Wavelet packets optimal decomposition
tree

Binary subtree of WPT

Wavelet packets best-level tree Complete binary subtree of WPT

Wavelet decomposition tree Left unilateral binary subtree of WPT of depth D

Wavelet best-basis tree Left unilateral binary subtree of WPT

We deduce the following definitions of optimal decompositions, with respect to
an entropy criterion E.

6-163

6 Advanced Concepts

Decompositions Optimal Decomposition Best-Level Decomposition

Wavelet packet
decompositions

Search among 2D trees Search among D trees

Wavelet decompositions Search among D trees Search among D trees

For any nonterminal node, we use the following basic step to find the optimal
subtree with respect to a given entropy criterion E (where Eopt denotes the
optimal entropy value).

Entropy Condition Action on Tree and on Entropy Labeling

E node Eopt c
c

() ()≤ ∑
 child of node

If (node≠root), merge and set Eopt(node) = E(node)

E node Eopt c
c

() ()> ∑
 child of node

Split and set Eopt node Eopt c
c

() ()= ∑
 child of node

with the natural initial condition on the reference tree, Eopt(t) = E(t) for
each terminal node t.

Reconstructing a Signal Approximation from a Node
You can use the function wprcoef to reconstruct an approximation to your
signal from any node in the wavelet packet tree. This is true irrespective
of whether you are working with a full wavelet packet tree, or a subtree
determined by an optimality criterion. Use wpcoef if you want to extract
the wavelet packet coefficients from a node without reconstructing an
approximation to the signal.

Load the noisy Doppler signal.

6-164

Wavelet Packets

load noisdopp

Compute the wavelet packet decomposition down to level 5 using the sym4
wavelet. Use the periodization mode.

dwtmode('per');
T = wpdec(noisdopp,5,'sym4');

Plot the binary wavelet packet tree and click on the (4,1) doublet (node 16).

Extract the wavelet packet coefficients from node 16.

wpc = wpcoef(T,16);
% wpc is length 64

Obtain an approximation to the signal from node 16.

rwpc = wprcoef(T,16);
% rwpc is length 1024
plot(noisdopp,'k'); hold on;
plot(rwpc,'b','linewidth',2);
axis tight;

6-165

6 Advanced Concepts

Determine the optimum binary wavelet packet tree.

Topt = besttree(T);
% plot the best tree
plot(Topt)

Reconstruct an approximation to the signal from the (3,0) doublet (node 7).

rsig = wprcoef(Topt,7);
% rsig is length 1024
plot(noisdopp,'k'); hold on;
plot(rsig,'b','linewidth',2);
axis tight;

6-166

Wavelet Packets

If you know which doublet in the binary wavelet packet tree you want to
extract, you can determine the node corresponding to that doublet with
depo2ind.

For example, to determine the node corresponding to the doublet (3,0), enter:

Node = depo2ind(2,[3 0]);

Wavelet Packets 2-D Decomposition Structure
Exactly as in the wavelet decomposition case, the preceding one-dimensional
framework can be extended to image analysis. Minor direct modifications lead
to quaternary tree-related definitions. An example is shown the following
figure for depth 2.

Quaternary Tree of Depth 2

Wavelet Packets for Compression and De-Noising
In the wavelet packet framework, compression and de-noising ideas are
identical to those developed in the wavelet framework. The only new feature
is a more complete analysis that provides increased flexibility. A single
decomposition using wavelet packets generates a large number of bases. You
can then look for the best representation with respect to a design objective,
using the function besttree with an entropy function. For more details, see
Chapter 3, “Using Wavelet Packets”.

6-167

6 Advanced Concepts

References
[Abr97] Abry, P. (1997), Ondelettes et turbulence. Multirésolutions,
algorithmes de décomposition, invariance d’échelles, Diderot Editeur, Paris.

[Abr03] Abry, P., P. Flandrin, M.S. Taqqu, D. Veitch (2003), “Self-similarity
and long-range dependence through the wavelet lens,” Theory and
applications of long-range dependence, Birkhäuser, pp. 527–556.

[Ant94] Antoniadis, A. (1994), “Smoothing noisy data with coiflets,” Statistica
Sinica 4 (2), pp. 651–678.

[AntO95] Antoniadis, A., G. Oppenheim, Eds. (1995), Wavelets and statistics,
Lecture Notes in Statistics 103, Springer Verlag.

[AntP98] Antoniadis A., D.T. Pham (1998), “Wavelet regression for random
or irregular design,” Comp. Stat. and Data Analysis, 28, pp. 353–369.

[AntG99] Antoniadis, A., G. Gregoire (1999), “Density and Hazard rate
estimation for right-censored data using wavelet methods,” J. R. Statist. Soc.
B, 61, 1, pp. 63–84.

[ArnABEM95] Arneodo, A., F. Argoul, E. Bacry, J. Elezgaray, J.F. Muzy
(1995), Ondelettes, multifractales et turbulence, Diderot Editeur, Paris.

[Bak95] Bakshi, B. (1998), “Multiscale PCA with application to MSPC
monitoring,” AIChE J. 44, pp. 1596–1610.

[BarJM03] Bardet, J.-M., G. Lang, G. Oppenheim, A. Philippe, S. Stoev, M.S.
Taqqu (2003), “Generators of long-range dependence processes: a survey”
Theory and applications of long-range dependence, Birkhäuser Boston,
pp. 579–623.

[BirM97] Birgé, L., P. Massart (1997), “From model selection to adaptive
estimation,” in D. Pollard (ed.), Festchrift for L. Le Cam, Springer, pp. 55–88.

[Bri95] Brislawn, C.M. (1995), “Fingerprints to digital,” Notices of the AMS.
Vol. 42, pp. 1278–1283.

6-168

References

[Bur96] Burke Hubbard, B. (1996), The world according to wavelets,
AK Peters, Wellesley. The French original version is titled Ondes et
Ondelettes. La saga d’un outil mathématique, Pour la Science, (1995).

[Chr06] Christophe, E., C. Mailhes, P. Duhamel (2006), “Adaptation of
zerotrees using signed binary digit representations for 3 dimensional image
coding,” EURASIP Journal on Image and Video Processing, 2007, to appear
in the special issue on Wavelets in Source Coding, Communications, and
Networks, Paper ID 54679.

[Chu92a] Chui, C.K. (1992a), Wavelets: a tutorial in theory and applications,
Academic Press.

[Chu92b] Chui, C.K. (1992b), An introduction to wavelets, Academic Press.

[Coh92] Cohen, A. (1992), “Ondelettes, analyses multirésolution et traitement
numérique du signal,” Ph.D. thesis, University of Paris IX, Dauphine.

[Coh95] Cohen, A. (1995), Wavelets and multiscale signal processing,
Chapman and Hall.

[CohDF92] Cohen, A., I. Daubechies, J.C. Feauveau (1992), “Biorthogonal
basis of compactly supported wavelets,” Comm. Pure Appli. Math. , vol. 45,
pp. 485–560.

[CohDJV93] Cohen, A., I. Daubechies, B. Jawerth, P. Vial (1993),
“Multiresolution analysis, wavelets and fast wavelet transform on an
interval,” CRAS Paris, Ser. A, t. 316, pp. 417–421.

[CoiD95] Coifman, R.R., D.L. Donoho (1995), “Translation invariant
de-noising,” Lecture Notes in Statistics, 103, pp. 125–150.

[CoiMW92] Coifman, R.R., Y. Meyer, M.V. Wickerhauser (1992), “Wavelet
analysis and signal processing,” in Wavelets and their applications,
M.B. Ruskai et al. (Eds.), pp. 153–178, Jones and Bartlett.

[CoiW92] Coifman, R.R., M.V Wickerhauser (1992), “Entropy-based
algorithms for best basis selection,” IEEE Trans. on Inf. Theory, vol. 38,
2, pp. 713–718.

6-169

6 Advanced Concepts

[Dau92] Daubechies, I. (1992), Ten lectures on wavelets, SIAM.

[DevJL92] DeVore, R.A., B. Jawerth, B.J. Lucier (1992), “Image compression
through wavelet transform coding,” IEEE Trans. on Inf. Theory, vol. 38,
2, pp. 719–746.

[Don93] Donoho, D.L. (1993), “Progress in wavelet analysis and WVD: a ten
minute tour,” in Progress in wavelet analysis and applications, Y. Meyer,
S. Roques, pp. 109–128. Frontières Ed.

[Don95] Donoho, D.L. (1995), “De-Noising by soft-thresholding,” IEEE Trans.
on Inf. Theory, vol. 41, 3, pp. 613–627.

[DonJ94a] Donoho, D.L., I.M. Johnstone (1994),“Ideal spatial adaptation by
wavelet shrinkage,” Biometrika, vol. 81, pp. 425–455.

[DonJ94b] Donoho, D.L., I.M. Johnstone (1994), “Ideal de-noising in an
orthonormal basis chosen from a library of bases,” CRAS Paris, Ser I, t. 319,
pp. 1317–1322.

[DonJKP95] Donoho, D.L., I.M. Johnstone, G. Kerkyacharian, D. Picard
(1995), “Wavelet shrinkage: asymptopia,” Jour. Roy. Stat. Soc., series B,
vol. 57, no. 2, pp. 301–369.

[DonJKP96] Donoho, D.L., I.M. Johnstone, G. Kerkyacharian, D. Picard
(1996), “Density estimation by wavelet thesholding,” Annals of Stat., 24,
pp. 508–539.

[Fla92] Flandrin, P. (1992), “Wavelet analysis and synthesis of fractional
Brownian motion,” IEEE Trans. on Inf. Th., 38, pp. 910–917.

[HalPKP97] Hall, P., S. Penev, G. Kerkyacharian, D. Picard (1997),
“Numerical performance of block thresholded wavelet estimators,” Stat. and
Computing, 7, pp. 115–124.

[HarKPT98] Hardle, W., G. Kerkyacharian, D. Picard, A. Tsybakov (1998),
Wavelets, approximation and statistical applications, Lecture Notes in
Statistics, 129, Springer Verlag.

6-170

References

[Ist94] Istas, J., G. Lang (1994), “Quadratic variations and estimation of
the local Hölder index of a Gaussian process,” Ann. Inst. Poincaré, 33, pp.
407–436.

[KahL95] Kahane, J.P., P.G Lemarié (1995), Fourier series and wavelets,
Gordon and Research Publishers, Studies in the Development of Modern
Mathematics, vol 3.

[Kai94] Kaiser, G. (1994), A friendly guide to wavelets, Birkhäuser.

[Lav99] Lavielle, M. (1999), “Detection of multiple changes in a sequence of
dependent variables,” Stoch. Proc. and their Applications, 83, 2, pp. 79–102.

[Lem90] Lemarié, P.G., Ed., (1990), Les ondelettes en 1989, Lecture Notes in
Mathematics, Springer Verlag.

[Mal89] Mallat, S. (1989), “A theory for multiresolution signal decomposition:
the wavelet representation,” IEEE Pattern Anal. and Machine Intell., vol.
11, no. 7, pp. 674–693.

[Mal98]Mallat, S. (1998), A wavelet tour of signal processing, Academic Press.

[Mey90] Meyer, Y. (1990), Ondelettes et opéateurs, Tome 1, Hermann Ed.
(English translation: Wavelets and operators), Cambridge Univ. Press, 1993.

[Mey93] Meyer, Y. (1993), Les ondelettes. Algorithmes et applications, Colin
Ed., Paris, 2nd edition. (English translation: Wavelets: algorithms and
applications, SIAM).

[MeyR93]Meyer, Y., S. Roques, Eds. (1993), Progress in wavelet analysis and
applications, Frontières Ed.

[MisMOP93a] Misiti, M., Y. Misiti, G. Oppenheim, J.M. Poggi (1993a),
“Analyse de signaux classiques par décomposition en ondelettes,” Revue de
Statistique Appliquée, vol. XLI, no. 4, pp. 5–32.

[MisMOP93b] Misiti, M., Y. Misiti, G. Oppenheim, J.M. Poggi (1993b),
“Ondelettes en statistique et traitement du signal,” Revue de Statistique
Appliquée, vol. XLI, no. 4, pp. 33–43.

6-171

6 Advanced Concepts

[MisMOP94] Misiti, M., Y. Misiti, G. Oppenheim, J.M. Poggi (1994),
“Décomposition en ondelettes et méthodes comparatives: étude d’une courbe
de charge électrique,” Revue de Statistique Appliquée, vol. XLII, no. 2, pp.
57–77.

[MisMOP03] Misiti, M., Y. Misiti, G. Oppenheim, J.-M. Poggi (2003), “Les
ondelettes et leurs applications,” Hermes.

[MisMOP07] Misiti, M., Y. Misiti, G. Oppenheim, J.-M. Poggi (2007),
Wavelets and their applications, ISTE DSP Series.

[NasS95] Nason, G.P., B.W. Silverman (1995), “The stationary wavelet
transform and some statistical applications,” Lecture Notes in Statistics, 103,
pp. 281–299.

[Ogd97] Ogden, R.T. (1997), Essential wavelets for statistical applications
and data analysis, Birkhäuser.

[PesKC96] Pesquet, J.C., H. Krim, H. Carfatan (1996), “Time-invariant
orthonormal wavelet representations,” IEEE Trans. Sign. Proc., vol. 44,
8, pp. 1964–1970.

[Sai96] Said A., W.A. Pearlman (1996), “A new, fast, and efficient image
codec based on set partitioning in hierarchical trees,” IEEE Trans. on Circuits
and Systems for Video Technology, Vol. 6, No. 3, pp. 243–250.

[Sha93] Shapiro J.M. (1993), “Embedded image coding using zerotrees
of wavelet coefficients,” IEEE Trans. Signal Proc., Vol. 41, No. 12,
pp. 3445–3462.

[StrN96] Strang, G., T. Nguyen (1996), Wavelets and filter banks,
Wellesley-Cambridge Press.

[Swe98] Sweldens, W. (1998), “The Lifting Scheme: a Construction of Second
Generation of Wavelets,” SIAM J. Math. Anal., 29 (2), pp. 511–546.

[Teo98] Teolis, A. (1998), Computational signal processing with wavelets,
Birkhäuser.

6-172

References

[VetK95] Vetterli, M., J. Kovacevic (1995), Wavelets and subband coding,
Prentice Hall.

[Wal99]Walker, J.S. (1999), “Wavelet-Based Image Compression,” University
of Wisconsin, Eau Claire, Wisconsin, USA, , Sub-chapter of CRC Press book:
Transform and Data Compression. A Primer on Wavelets and Their Scientific
Applications. A second edition is published in 2008.

[Wic91] Wickerhauser, M.V. (1991), “INRIA lectures on wavelet packet
algorithms,” Proceedings ondelettes et paquets d’ondes, 17–21 June,
Rocquencourt France, pp. 31–99.

[Wic91] Wickerhauser, M.V. (1991), “INRIA lectures on wavelet packet
algorithms,” Proceedings ondelettes et paquets d’ondes, 17–21 June,
Rocquencourt France, pp. 31–99.

[Wic94] Wickerhauser, M.V. (1994), Adapted wavelet analysis from theory
to software algorithms, A.K. Peters.

[Zee98] Zeeuw, P.M. (1998), “Wavelet and image fusion,” CWI, Amsterdam,
March 1998, http:/www.cwi.nl/~pauldz/

6-173

6 Advanced Concepts

6-174

7

Adding Your Own Wavelets

This chapter discusses how to add your own wavelet families to the toolbox.

• “Preparing to Add a New Wavelet Family” on page 7-2

• “Adding a New Wavelet Family” on page 7-8

• “After Adding a New Wavelet Family” on page 7-16

7 Adding Your Own Wavelets

Preparing to Add a New Wavelet Family
Wavelet Toolbox software contains a lot of wavelet families, but by using
the wavemngr function, you can add new wavelets to the existing ones to
implement your favorite wavelet or try out one of your own design. The
toolbox allows you to define new wavelets for use with both the command line
functions and the graphical interface tools.

Caution This capability must be used carefully, because the toolbox does not
check that your wavelet meets all the mathematical requisites.

The wavemngr function affords extensive wavelet management. However, this
chapter focuses only on the addition of a wavelet family. For more complete
information, see the wavemngr entry in the Reference Guide.

The wavemngr command permits you to add new wavelets and wavelet
families to the predefined ones. However, before you can use the wavemngr
command to add a new wavelet, you must

1 Choose the full name of the wavelet family (fn).

2 Choose the short name of the wavelet family (fsn).

3 Determine the wavelet type (wt).

4 Define the orders of wavelets within the given family (nums).

5 Build a MAT-file or a MATLAB file (file).

6 For wavelets without FIR filters: Define the effective support.

These steps are described below.

Choose the Wavelet Family Full Name
The full name of the wavelet family, fn, must be a string. Predefined wavelet
family names are Haar, Daubechies, Symlets, Coiflets, BiorSplines,

7-2

Preparing to Add a New Wavelet Family

ReverseBior, Meyer, DMeyer, Gaussian, Mexican_hat, Morlet, Complex
Gaussian, Shannon, Frequency B-Spline, and Complex Morlet.

Choose the Wavelet Family Short Name
The short name of the wavelet family, fsn, must be a string of four characters
or less. Predefined wavelet family short names are haar, db, sym, coif, bior,
rbio, meyr, dmey, gaus, mexh, morl, cgau, fbsp, and cmor.

Determine the Wavelet Type
We distinguish five types of wavelets:

1 Orthogonal wavelets with FIR filters

These wavelets can be defined through the scaling filter w. Predefined
families of such wavelets include Haar, Daubechies, Coiflets, and
Symlets.

2 Biorthogonal wavelets with FIR filters

These wavelets can be defined through the two scaling filters wr and wd, for
reconstruction and decomposition respectively. The BiorSplines wavelet
family is a predefined family of this type.

3 Orthogonal wavelets without FIR filter, but with scale function

These wavelets can be defined through the definition of the wavelet
function and the scaling function. The Meyer wavelet family is a predefined
family of this type.

4 Wavelets without FIR filter and without scale function

These wavelets can be defined through the definition of the wavelet
function. Predefined families of such wavelets include Morlet and
Mexican_hat.

5 Complex wavelets without FIR filter and without scale function

7-3

7 Adding Your Own Wavelets

These wavelets can be defined through the definition of the wavelet
function. Predefined families of such wavelets include Complex Gaussian
and Shannon.

Define the Orders of Wavelets Within the Given
Family
If a family contains many wavelets, the short name and the order are
appended to form the wavelet name. Argument nums is a string containing the
orders separated with blanks. This argument is not used for wavelet families
that only have a single wavelet (Haar, Meyer, and Morlet for example).

For example, for the first Daubechies wavelets,

fsn = 'db'
nums = '1 2 3'

yield the three wavelets db1, db2, and db3.

For the first BiorSplines wavelets,

fsn = 'bior'
nums = '1.1 1.3 1.5 2.2'

yield the four wavelets bior1.1, bior1.3, bior1.5, and bior2.2.

Build a MAT-File or Code File
The wavemngr command requires a file argument, which is a string
containing a MATLAB code file or MAT-file name.

If a family contains many wavelets, a MATLAB code file (with a .m extension)
must be defined and must be of a specific form that depends on the wavelet
type. The specific file formats are described in the remainder of this section.

If a family contains a single wavelet, then a MAT-file can be defined for
wavelets of type 1. It must have the wavelet family short name (fsn) argument
as its name and must contain a single variable whose name is fsn and whose
value is the scaling filter. An code file can also be defined as discussed below.

7-4

Preparing to Add a New Wavelet Family

Note If no file extension is specified, a .m extension is used as default.

Type 1 (Orthogonal with FIR Filter)
The syntax of the first line in the code file must be

function w = file(wname)

where the input argument wname is a string containing the wavelet name, and
the output argument w is the corresponding scaling filter.

The filter w must be of even length; otherwise, it is zero-padded by the toolbox.

For predefined wavelets, the scaling filter is of sum 1. For a new wavelet, the
normalization is free (except 0 of course) since the toolbox uses a suitably
normalized version of this filter.

Examples of such files for predefined wavelets are dbwavf.m for Daubechies,
coifwavf.m for coiflets, and symwavf.m for symlets.

Type 2 (Biorthogonal with FIR Filter)
The syntax of the first line in the code file must be

function [wr,wd] = file(wname)

where the input argument wname is a string containing the wavelet name and
the output arguments wr and wd are the corresponding reconstruction and
decomposition scaling filters, respectively.

The filters wr and wd must be of the same even length. In general, initial
biorthogonal filters do not meet these requirements, so they are zero-padded
by the toolbox.

For predefined wavelets, the scaling filters are of sum 1. For a new wavelet,
the normalization is free (except 0 of course) since the toolbox uses a suitably
normalized version of these filters.

7-5

7 Adding Your Own Wavelets

The file biorwavf.m (for BiorSplines) is an example of a file for a type 2
predefined wavelet family.

Type 3 (Orthogonal with Scale Function)
The syntax of the first line in the code file must be

function [phi,psi,t] = file(lb,ub,n,wname)

which returns values of the scaling function phi and of the wavelet function
psi on t, a regular n-point grid of the interval [lb ub].

The argument wname is optional (see Note below).

The file meyer.m is an example of a file for a type 3 predefined wavelet family.

Type 4 or Type 5 (No FIR Filter; No Scale Function)
The syntax of the first line in the code file must be

function [psi,t] = file(lb,ub,n,wname)

or

function [psi,t] = file(lb,ub,n,wname, "additional arguments")

which returns values of the wavelet function psi on t, a regular n-point grid of
the interval [lb ub].

The argument wname is optional (see Note below).

Examples of type 4 files for predefined wavelet families are mexihat.m (for
Mexican_hat) and morlet.m (for Morlet).

Examples of type 5 files for predefined wavelet families are shanwavf.m (for
Shannon) and cmorwavf.m (for Complex Morlet).

7-6

Preparing to Add a New Wavelet Family

Note For the types 3, 4, and 5, the wname argument can be optional. It is only
required if the new wavelet family contains more than one wavelet and if
you plan to use this new family in the GUI mode. For the types 4 and 5, a
complete example of using the "additional arguments" can be found looking
at the reference page for the fbspwavf function.

Define the Effective Support
This definition is required only for wavelets of types 3, 4, and 5, since they
are not compactly supported.

Defining the effective support means specifying an upper and lower bound.
For example, for some predefined wavelet families, we have the following.

Family Lower Bound (lb) Upper Bound (ub)

Meyer –8 8

Mexican_hat –5 5

Morlet –4 4

Note For wavelets of type 3, 4, and 5, [–4 4] are the correct effective support
theoretical values, but a wider effective support, [–8 8], is used in computation
to provide more accurate results.

7-7

7 Adding Your Own Wavelets

Adding a New Wavelet Family
To add a new wavelet, use the wavemngr command in one of two forms:

wavemngr('add',fn,fsn,wt,nums,file)

or

wavemngr('add',fn,fsn,wt,nums,file,b).

Here are a few examples to illustrate how you would use wavemngr to add
some of the predefined wavelet families:

Type Syntax

1 wavemngr('add','Ndaubechies','ndb',1,'1 2 3 4
5','dbwavf');

1 wavemngr('add','Ndaubechies','ndb',1,'1 2 3 4 5
**','dbwavf');

2 wavemngr('add','Nbiorwavf','nbio',2,'1.1
1.3','biorwavf');

3 wavemngr('add','Nmeyer','nmey',3,'','meyer',[-8,8]);

4 wavemngr('add','Nmorlet','nmor',4,'','morlet',[-4,4]).

Example 1
Let us take the example of Binlets proposed by Strang and Nguyen in pages
216-217 of the book Wavelets and Filter Banks (see [StrN96] in “References”
on page 6-168).

Note The files used in this example can be found in the wavedemo folder.

The full family name is Binlets.

The short name of the wavelet family is binl.

7-8

Adding a New Wavelet Family

The wavelet type is 2 (Biorthogonal with FIR filters).

The order of the wavelet within the family is 7.9 (we just use one in this
example).

The file used to generate the filters is binlwavf.m

Then to add the new wavelet, type

% Add new family of biorthogonal wavelets.
wavemngr('add','Binlets','binl',2,'7.9','binlwavf')

% List wavelets families.
wavemngr('read')

ans =

===================================
Haar haar
Daubechies db
Symlets sym
Coiflets coif
BiorSplines bior
ReverseBior rbio
Meyer meyr
DMeyer dmey
Gaussian gaus
Mexican_hat mexh
Morlet morl
Complex Gaussian cgau
Shannon shan
Frequency B-Spline fbsp
Complex Morlet cmor
Binlets binl
===================================

If you want to get online information on this new family, you can build an
associated help file which would look like the following:

function binlinfo

7-9

7 Adding Your Own Wavelets

%BINLINFO Information on biorthogonal wavelets (binlets).
%
% Biorthogonal Wavelets (Binlets)
%
% Family Binlets
% Short name binl
% Order Nr,Nd Nr = 7 , Nd = 9
%
% Orthogonal no
% Biorthogonal yes
% Compact support yes
% DWT possible
% CWT possible
%
% binl Nr.Nd ld lr
% effective length effective length
% of LoF_D of HiF_D
% binl 7.9 7 9

The associated file to generate the filters (binlwavf.m) is

function [Rf,Df] = binlwavf(wname)
%BINLWAVF Biorthogonal wavelet filters (Binlets).
% [RF,DF] = BINLWAVF(W) returns two scaling filters
% associated with the biorthogonal wavelet specified
% by the string W.
% W = 'binlNr.Nd' where possible values for Nr and Nd are:

Nr = 7 Nd = 9
% The output arguments are filters:
% RF is the reconstruction filter
% DF is the decomposition filter

% Check arguments.
if errargn('binlwavf',nargin,[0 1],nargout,[0:2]), error('*');
end
% suppress the following line for extension
Nr = 7; Nd = 9;

% for possible extension
% more wavelets in 'Binlets' family

7-10

Adding a New Wavelet Family

%----------------------------------
if nargin==0

Nr = 7; Nd = 9;
elseif isempty(wname)

Nr = 7; Nd = 9;
else

if ischar(wname)
lw = length(wname);
ab = abs(wname);
ind = find(ab==46 | 47<ab | ab<58);
li = length(ind);
err = 0;
if li==0

err = 1;
elseif ind(1)~=ind(li)-li+1

err = 1;
end
if err==0 ,

wname = str2num(wname(ind));
if isempty(wname) , err = 1; end

end
end
if err==0

Nr = fix(wname); Nd = 10*(wname-Nr);
else

Nr = 0; Nd = 0;
end

end

% suppress the following lines for extension
% and add a test for errors.
%---
if Nr~=7 , Nr = 7; end
if Nd~=9 , Nd = 9; end

if Nr == 7
if Nd == 9

Rf = [-1 0 9 16 9 0 -1]/32;
Df = [1 0 -8 16 46 16 -8 0 1]/64;

end

7-11

7 Adding Your Own Wavelets

end

Example 2
In the following example, new compactly supported orthogonal wavelets are
added to the toolbox. These wavelets, which are a slight generalization of the
Daubechies wavelets, are based on the use of Bernstein polynomials and are
due to Kateb and Lemarié in an unpublished work.

Note The files used in this example can be found in the wavedemo folder.

% List initial wavelets families.
wavemngr('read')

ans =
===================================
Haar haar
Daubechies db
Symlets sym
Coiflets coif
BiorSplines bior
ReverseBior rbio
Meyer meyr
DMeyer dmey
Gaussian gaus
Mexican_hat mexh
Morlet morl
Complex Gaussian cgau
Shannon shan
Frequency B-Spline fbsp
Complex Morlet cmor
===================================
% List all wavelets.

wavemngr('read',1)

ans =

===================================
Haar haar

7-12

Adding a New Wavelet Family

===================================
Daubechies db

db1 db2 db3 db4
db5 db6 db7 db8
db9 db10 db**
===================================
Symlets sym

sym2 sym3 sym4 sym5
sym6 sym7 sym8 sym**
===================================
Coiflets coif

coif1 coif2 coif3 coif4
coif5
===================================
BiorSplines bior

bior1.1 bior1.3 bior1.5 bior2.2
bior2.4 bior2.6 bior2.8 bior3.1
bior3.3 bior3.5 bior3.7 bior3.9
bior4.4 bior5.5 bior6.8
===================================
ReverseBior rbio

rbio1.1 rbio1.3 rbio1.5 rbio2.2
rbio2.4 rbio2.6 rbio2.8 rbio3.1
rbio3.3 rbio3.5 rbio3.7 rbio3.9
rbio4.4 rbio5.5 rbio6.8
===================================
Meyer meyr
===================================
DMeyer dmey
===================================
Gaussian gaus

gaus1 gaus2 gaus3 gaus4
gaus5 gaus6 gaus7 gaus8
gaus**

7-13

7 Adding Your Own Wavelets

===================================
Mexican_hat mexh
===================================
Morlet morl
===================================
Complex Gaussian cgau

cgau1 cgau2 cgau3 cgau4
cgau5 cgau**
===================================
Shannon shan

shan1-1.5 shan1-1 shan1-0.5 shan1-0.1
shan2-3 shan**
===================================
Frequency B-Spline fbsp

fbsp1-1-1.5 fbsp1-1-1 fbsp1-1-0.5 fbsp2-1-1
fbsp2-1-0.5 fbsp2-1-0.1 fbsp**
===================================
Complex Morlet cmor

cmor1-1.5 cmor1-1 cmor1-0.5 cmor1-1
cmor1-0.5 cmor1-0.1 cmor**
===================================
% Add new family of orthogonal wavelets.
% You must define:
%
% Family Name: Lemarie
% Family Short Name: lem
% Type of wavelet: 1 (orth)
% Wavelets numbers: 1 2 3 4 5
% File driver: lemwavf
%
% The function lemwavf.m must be as follow:
% function w = lemwavf(wname)
% where the input argument wname is a string:
% wname = 'lem1' or 'lem2' ... i.e.,
% wname = sh.name + number
% and w the corresponding scaling filter.

7-14

Adding a New Wavelet Family

% The addition is obtained using:
wavemngr('add','Lemarie','lem',1,'1 2 3 4 5','lemwavf');

% The ascii file 'wavelets.asc' is saved as
% 'wavelets.prv', then it is modified and
% the MAT file 'wavelets.inf' is generated.

% List wavelets families.
wavemngr('read')

ans =
===================================
Haar haar
Daubechies db
Symlets sym
Coiflets coif
BiorSplines bior
ReverseBior rbio
Meyer meyr
DMeyer dmey
Gaussian gaus
Mexican_hat mexh
Morlet morl
Complex Gaussian cgau
Shannon shan
Frequency B-Spline fbsp
Complex Morlet cmor
Lemarie lem
===================================

7-15

7 Adding Your Own Wavelets

After Adding a New Wavelet Family
When you use the wavemngr command to add a new wavelet, the toolbox
creates three wavelet extension files in the current folder: the two ASCII files
wavelets.asc and wavelets.prv, and the MAT-file wavelets.inf.

If you want to use your own extended wavelet families with the Wavelet
Toolbox software, you should

1 Create a new folder specifically to hold the wavelet extension files.

2 Move the previously mentioned files into this new folder.

3 Prepend this folder to the MATLAB folder search path (see the reference
entry for the path command).

4 Use this same folder for subsequent modifications. Allowing many wavelet
extension files to proliferate in different folders may lead to unpredictable
results.

5 Define a file called <fsn>info.m (for example, see dbinfo.m or morlinfo.m).

This file will be associated automatically with theWavelet Family button
in the Wavelet Display option of the graphical tools.

7-16

A

GUI Reference

This appendix explains some of the features of the Wavelet Toolbox graphical
user interface (GUI).

• “General Features” on page A-2

• “Continuous Wavelet Tool Features” on page A-17

• “Wavelet 1-D Tool Features” on page A-18

• “Wavelet 2-D Tool Features” on page A-20

• “Wavelet Packet Tool Features (1-D and 2-D)” on page A-21

• “Wavelet Display Tool” on page A-26

• “Wavelet Packet Display Tool” on page A-27

A GUI Reference

General Features
Some features of the Wavelet Toolbox graphical user interface are

• Color coding

• Connectedness of plots

• Using the mouse

• Controlling the colormap

• Controlling the number of colors

• Controlling the coloration mode

• Customizing graphical objects

• Using menus

• Using View Axes button

• Using Interval Dependent Threshold Settings tool

Note In this appendix, axis (or axes) refers to the MATLAB graphic object.

Color Coding
In all the graphical tools, signals and analysis components are color coded as
follows.

Signal Shown In

Original Red

Reconstructed or synthesized Yellow

Approximations Variegated shades of blue

(high level = darker)

Details Variegated shades of green

(high level = darker)

A-2

General Features

Connection of Plots
Plots containing related information and graphed on the same abscissa are
connected in the sense that manipulations performed on one plot affect all
others in the same way. For images, the connection holds in both abscissa and
ordinate. You can manipulate all plots along an individual axis (X or Y) or you
can manipulate all plots along both axes at the same time (XY).

For example, the approximations and details shown in the separate mode
view of a decomposition all respond together when any of the plots is
magnified or zoomed.

Using the Mouse
Wavelet Toolbox software uses three types of mouse control.

A-3

A GUI Reference

Left Mouse Button Middle Mouse Button Right Mouse Button

Make selections.
Activate controls.

Display cross-hairs
to show
position-dependent
information.

Translate plots up and
down, and left and
right.

Note The functionality of the middle mouse button and the right mouse
button can be inverted depending on the platform.

Making Selections and Activating Controls
Most of your work with Wavelet Toolbox graphical tools involves making
selections and activating controls. You do this using the left (or only) mouse
button.

Translating Plots
By holding down the right mouse button (or its equivalent on a one- or
two-button mouse), you can move the mouse to draw a rectangle in either a

A-4

General Features

horizontal or vertical orientation. Releasing the middle mouse button then
causes the plot to shift horizontally (or vertically) by an amount proportional
to the width (or height) of the rectangle.

Displaying Position-Dependent Information
When you hold down the middle mouse button (or its equivalent on a one-
or two-button mouse), a cross-hair cursor appears over the graph or plot.
Position-dependent information also appears in the Info box located at the
bottom center of the tool. The type of information that appears depends on
what tool you are using and the plot in which your cursor is located. For
example, the figure on the left shows the position in X and Y for a signal, the
figure on the center shows the X position and the packet number for a discrete
wavelet packet analysis, and the figure on the right shows the X position and
the percentage of energy present in the detail level for a one-dimensional
discrete wavelet analysis.

A-5

A GUI Reference

Controlling the Colormap
The Colormap selection box, located at the lower right of the window, allows
you to adjust the colormap that is used to plot images or coefficients (wavelet
or wavelet packet).

This is more than an aesthetic adjustment because you are likely to see
different features depending on your colormap selection.

Consider these images of the Mandelbrot set generated in the Wavelet
Packet 2-D tool, shown here using the bone and 1 bone colormaps.

Controlling the Number of Colors
The Nb. Colors slider, located at the bottom right of the window, allows you
to adjust how many colors the tool uses to plot images or coefficients (wavelet
or wavelet packet). You can also use the edit control to adjust the number
of colors. Adjusting the number of colors can highlight different features of
the plot.

Consider the coefficients plot of the Koch curve generated in the Continuous
Wavelet tool, shown here using 129 colors.

A-6

General Features

and here using 68 colors.

Controlling the Coloration Mode
In the Continuous Wavelet tools, the coloration of coefficients can be done
in several different ways.

A-7

A GUI Reference

In the Wavelet 1-D tool, you access coefficients coloration with the More
Display Options button, and then select the desired Coloration Mode
option.

The More Display Options button appears only when the Display mode
is one of the following — Show and Scroll, Show and Scroll (Stem Cfs),
Superimposed, and Separate). In this case, scales are replaced by levels in
all options of the Coloration Mode menu.

A-8

General Features

Using Menus

General Menu Bar
At the top of most windows you find the same kind of structure. The menu
bar of each figure in Wavelet Toolbox software is very similar to the menu
bar of the default MATLAB figures. You can use many of the tools that are
offered in the menus and associated toolbar of the standard MATLAB figures.

One of the main differences is the View menu, which depends on the current
tool used.

View Dynamical Visualization Tool Option. The View > Dynamical
Visualization Tool option lets you enable or disable the Dynamical
Visualization Tool located at the bottom of each window.

A-9

A GUI Reference

Before using Zoom In, Zoom Out, or Rotate 3D options (or the equivalent
icons from the toolbar), you must disable the Dynamical Visualization
Tool to avoid possible conflicts.

Default Display Mode Option. The Default Display Mode option is
specific to theWavelet 1-D tool and lets you set a default Display Mode for
all the different analyses you perform inside the same tool.

File Menu Options
Depending on the tool you are using, the File menu contains customized
options. For example, for the Wavelet 1-D tool, the following options are
added:

A-10

General Features

Many windows have a FileExample Analysis menu option, which allows
you to select an analysis example using predefined parameters.

A-11

A GUI Reference

Here is an example of the Wavelet 1-D tool.

Help Menu Options
The help menu structure is very similar in all the figures, but many options
are specific to the current tool in use.

A-12

General Features

Using the View Axes Button
The Dynamical Visualization Tool is located at the bottom of most of the
windows in the Wavelet Toolbox software. In this tool, the View Axes toggle
button lets you magnify the axis that you choose.

A-13

A GUI Reference

The toggle buttons in the View Axes figure are positioned so that you can
understand which axis is correlated with a button.

When you click the same toggle button again, you restore the original view.

A-14

General Features

Clicking the View Axes toggle button again closes the View Axes figure.

Using the Interval-Dependent Threshold Settings Tool
The following tools in the Wavelet Toolbox software let you define
interval-dependent thresholds:

• Wavelet De-noising 1-D

• Wavelet Compression 1-D

• SWT De-noising 1-D

• Regression Estimation 1-D

• Density Estimation 1-D

To the right of the main window for these tools, you see a command frame
similar to the following

Clicking the Int. dependent threshold settings toggle button displays
the Int. dependent Threshold Settings for ... window. After some
computation is performed, the following figure appears.

A-15

A GUI Reference

For more information on how to change interval limits and threshold values,
see the section “One-Dimensional Variance Adaptive Thresholding of Wavelet
Coefficients” in the Wavelet Toolbox Getting Started Guide.

A-16

Continuous Wavelet Tool Features

Continuous Wavelet Tool Features
Here is an example of an option that allows you to perform analysis using
different scale modes.

A-17

A GUI Reference

Wavelet 1-D Tool Features
The Wavelet 1-D tool is described in the section “One-Dimensional Analysis
Using the Graphical Interface” in the Wavelet Toolbox Getting Started Guide.
Here are two examples of options not covered there.

Tree Mode
This is one of the display options in which you can view the corresponding
signal by selecting a node in the tree.

Here, on the left, the node d3 is selected and the corresponding detail is
displayed under the original signal.

More Display Options
This option allows you to customize what is displayed and is dependent on the
current visualization mode.

In this example for the Separate Mode, we have chosen not to display the
coefficients of approximation for levels 2 and 3, nor the coefficients of detail

A-18

Wavelet 1-D Tool Features

for levels 4 and 5. The coefficients’ coloration mode has been changed, and
the synthesized signal is displayed in the right-hand column, rather than
the original signal.

A-19

A GUI Reference

Wavelet 2-D Tool Features
TheWavelet 2-D tool is described in the section “Two-Dimensional Analysis
Using the Graphical Interface” in the Wavelet Toolbox Getting Started Guide.
Here is an example of an option that allows you to view a selected part of the
window at a full window resolution.

A-20

Wavelet Packet Tool Features (1-D and 2-D)

Wavelet Packet Tool Features (1-D and 2-D)
For descriptions of theWavelet Packet 1-D andWavelet Packet 2-D tools,
refer to Chapter 3, “Using Wavelet Packets”. These tools are almost identical
in their layout and function. The only difference involves the extra coloration
modes available in the Wavelet Packet 1-D tool, as well as the ability of
the tools to work with signals or images, as appropriate. Let us focus on the
1-D capabilities.

Coefficients Coloration
NAT or FRQ is for Natural or Frequency order (see “Wavelet Packet Atoms”
on page 6-154).

By level or Global is for a coloration made level by level or taking all detail
levels.

A-21

A GUI Reference

abs is used to take the absolute values of coefficients.

Node Action
When you select a node in the tree, the selected option is performed. A
complete description of options is provided in the following sections.

Node Label
The node labels can be changed using the pop-up menu. For example, the
Type option labels the nodes with (a) for approximation and (d) for detail.

Node Action Functionality
The available options in the Node Action menu are

• Visualize: When you select a node in the wavelet packet tree the
corresponding signal appears.

• Split/Merge: If a terminal node is selected, it is split, growing the wavelet
packet tree. Selecting other nodes has the behavior of merging all the nodes
below it in the wavelet packet tree.

A-22

Wavelet Packet Tool Features (1-D and 2-D)

• Recons.: When you select a node in the wavelet packet tree, the
corresponding reconstructed signal appears.

• Select On/Off: When On, you can select many nodes in the wavelet packet
tree. Then you can reconstruct a synthesized signal from the selected nodes
using the Reconstruct button on the main window. Use the Off selection
to deselect all the previous selected nodes.

A-23

A GUI Reference

• Statistics: When you select a node in the wavelet packet tree, the
Statistics tool appears using the signal corresponding to the selected node.

• View Col. Cfs.: When active, this option removes all the colored
coefficients displayed, and lets you redraw only the corresponding
coefficients by selecting a node in the wavelet packet tree.

A-24

Wavelet Packet Tool Features (1-D and 2-D)

A-25

A GUI Reference

Wavelet Display Tool
The Wavelet Display tool is mentioned in the section “Introduction to the
Wavelet Families” in the Wavelet Toolbox Getting Started Guide.

Here, we show the main window and the associated information windows with
some additional comments.

A-26

Wavelet Packet Display Tool

Wavelet Packet Display Tool
The Wavelet Packet Display tool is very similar to the Wavelet Display
tool.

Here, the main window and the associated information windows are displayed
with some additional comments.

A-27

A GUI Reference

A-28

B

Object-Oriented
Programming

This appendix explains concepts of object-oriented programming as they apply
to Wavelet Toolbox software.

• “Introduction to Object-Oriented Features” on page B-2

• “Short Description of Objects in the Wavelet Toolbox Software” on page B-3

• “Simple Use of Objects Through Four Examples” on page B-5

• “Detailed Description of Objects in the Wavelet Toolbox Software” on page
B-16

• “Advanced Use of Objects” on page B-23

B Object-Oriented Programming

Introduction to Object-Oriented Features
In the Wavelet Toolbox software, some object-oriented programming features
are used for wavelet packet tree structures.

You may want to skip this appendix, if you prefer to use the command line
functions and graphical user interface (GUI) without knowing about the
underlying objects and classes. But, it is useful for Save and Load actions
where objects are involved.

These aspects, related to a minimal use, are described in Chapter 3, “Using
Wavelet Packets”, and in the reference pages for the corresponding functions.

This appendix lets you understand the objects used in the toolbox, use some
functions that are not fully documented in the reference pages, and extend
the toolbox functionality using the predefined tree structures and some object
programming features.

It is helpful to be familiar with the basic MATLAB object-oriented language
and terminology.

B-2

Short Description of Objects in the Wavelet Toolbox™ Software

Short Description of Objects in the Wavelet Toolbox
Software

Four classes of objects are defined in the Wavelet Toolbox software.

The hierarchical organization of these objects is described in the following
scheme:

Only the Wavelet Packet tools (1-D and 2-D) use the previous objects. More
precisely, WPTREE objects are used to build wavelet packets.

A short description of this hierarchy of objects follows. For a more detailed
description see “Short Description of Objects in the Wavelet Toolbox Software”
on page B-3.

TheWTBO class is an abstract class. Any object in the toolbox is parented by
aWTBO object and would inherit the methods and fields of theWTBO class.

The NTREE class is dedicated to tree manipulation (node labels, node
splitting, node merging, ...), and it is also an abstract class. The main methods
are

• nodejoin, which recomposes nodes

• nodesplt, which decomposes nodes

• wtreemgr, which lets you access most of tree and node information (order,
depth, terminal nodes, ascendants of a node, ...)

In fact, the wtreemgr method is not used directly, but you can use the
functions treeord, treedpth, leaves, nodeasc, ..., and the method get.

The DTREE class is dedicated to trees with associated data: vectors or
matrices.

This class is also an abstract class and some methods have to be overloaded.

The aim of theWPTREE class is to manage wavelet packets 1-D and 2-D.

B-3

B Object-Oriented Programming

Some methods of the DTREE class have been overloaded, for example:
split, merge, and recons.

Most of the methods are specific to the class WPTREE; for example:
bestlevt, besttree, and wp2wtree.

By typing help wavelet you can see the available methods in the Tree
Management Utilities andWavelets Packets Algorithms sections.

B-4

Simple Use of Objects Through Four Examples

Simple Use of Objects Through Four Examples
You can use command line functions, GUI functions, or you can mix both
of them to work with wavelet packet trees (WPTREE objects). The most
useful commands are

• plot, drawtree, and readtree, which let you plot and get a wavelet packet
tree

• wpjoin and wpsplt, which let you change a wavelet packet tree structure

• get, read, and write, which let you read and write coefficients or
information in a wavelet packet tree

We can see some of these features in the following examples.

• “Example 1: plot and wpviewcf” on page B-5

• “Example 2: drawtree and readtree” on page B-8

• “Example 3: A Funny One” on page B-10

• “Example 4: Thresholding Wavelet Packets” on page B-12

Example 1: plot and wpviewcf

load noisbump
x = noisbump;
t = wpdec(x,3,'db2');
fig = plot(t);

% Change Node Label from Depth_position to Index and
% click the node (7). You get the following figure.

B-5

B Object-Oriented Programming

% Change Node Action from Visualize to Split-Merge and
% merge the node 2. You get the following figure.

% From the command line, you can get the new tree.
newt = plot(t,'read',fig);

% The first argument of the plot function in the last command
% is dummy. Then the general syntax is:
% newt = plot(DUMMY,'read',fig);
% where DUMMY is any object parented by an NTREE object.

B-6

Simple Use of Objects Through Four Examples

% DUMMY can be any object constructor name, which returns
% an object parented by an NTREE object. For example:
% newt = plot(ntree,'read',fig);
% newt = plot(dtree,'read',fig);
% newt = plot(wptree,'read',fig);

% From the command line you can modify the new tree,
% then plot it.
newt = wpjoin(newt,3);
fig2 = plot(newt);

% Change Node Label from Depth_position to Index and
% click the node (3). You get the following figure.

% Using plot(newt,fig), the plot is done in the figure fig,
% which already contains a tree object.

% You can see the colored wavelet packets coefficients using
% from the command line, the wpviewcf function (type help
% wpviewcf for more information).
wpviewcf(newt,1)

% You get the following plot, which contains the terminal nodes
% colored coefficients.

B-7

B Object-Oriented Programming

Example 2: drawtree and readtree

load noisbump
x = noisbump;
t = wpdec(x,3,'db2');
fig = drawtree(t);

% The last command creates a GUI.
% The same GUI can be obtained using the main menu and:
% - clicking the Wavelet Packet 1-D button,
% - loading the signal noisbump,
% - choosing the level and the wavelet
% - clicking the decomposition button.
% You get the following figure.

B-8

Simple Use of Objects Through Four Examples

% From the GUI, you can modify the tree.
% For example, change Node label from Depth_Position to Index,
% change Node Action from Visualize to Split_Merge and
% merge the node 2.
% You get the following figure.

% From the command line, you can get the new tree.

B-9

B Object-Oriented Programming

newt = readtree(fig);

% From the command line you can modify the new tree;
% then plot it in the same figure.
newt = wpjoin(newt,3);
drawtree(newt,fig);

You can mix previous commands. The GUI associated with the plot command
is simpler and quicker, but more actions and information are available using
the full GUI tools related to wavelet packets.

The methods associated with WPTREE objects let you do more complicated
actions.

Namely, using read and write methods, you can change terminal node
coefficients.

Let’s illustrate this point with the following “funny” example.

Example 3: A Funny One

load gatlin2
t = wpdec2(X,1,'haar');
plot(t);

B-10

Simple Use of Objects Through Four Examples

% Change Node Label from Depth_position to Index and
% click the node (0). You get the following figure.

% Now modify the coefficients of the four terminal nodes.
newt = t;
NBcols = 40;

for node = 1:4
cfs = read(t,'data',node);
tmp = cfs(1:end,1:NBcols);
cfs(1:end,1:NBcols) = cfs(1:end,end-NBcols+1:end);
cfs(1:end,end-NBcols+1:end) = tmp;
newt = write(newt,'data',node,cfs);

end
plot(newt)

% Change Node Label from Depth_position to Index and
% click on the node (0). You get the following figure.

B-11

B Object-Oriented Programming

You can use this method for a more useful purpose. Let’s see a de-noising
example.

Example 4: Thresholding Wavelet Packets

load noisbloc
x = noisbloc;
t = wpdec(x,3,'sym4');
plot(t);
% Change Node Label from Depth_position to Index and
% click the node (0). You get the following plot.

B-12

Simple Use of Objects Through Four Examples

% Global thresholding.
t1 = t;
sorh = 'h';
thr = wthrmngr('wp1ddenoGBL','penalhi',t);
cfs = read(t,'data');
cfs = wthresh(cfs,sorh,thr);
t1 = write(t1,'data',cfs);
plot(t1)

% Change Node Label from Depth_position to Index and
% click the node (0). You get the following plot.

B-13

B Object-Oriented Programming

% Node by node thresholding.
t2 = t;
sorh = 's';
thr(1) = wthrmngr('wp1ddenoGBL','penalhi',t);
thr(2) = wthrmngr('wp1ddenoGBL','sqtwologswn',t);
tn = leaves(t);
for k=1:length(tn)

node = tn(k);
cfs = read(t,'data',node);
numthr = rem(node,2)+1;
cfs = wthresh(cfs,sorh,thr(numthr));
t2 = write(t2,'data',node,cfs);

end
plot(t2)

% Change Node Label from Depth_position to Index and
% click the node (0). You get the following plot.

B-14

Simple Use of Objects Through Four Examples

B-15

B Object-Oriented Programming

Detailed Description of Objects in the Wavelet Toolbox
Software

The following sections describe the objects in the Wavelet Toolbox software:

• “WTBO Object” on page B-16

• “NTREE Object” on page B-17

• “DTREE Object” on page B-18

• “WPTREE Object” on page B-20

WTBO Object
Class WTBO (Wavelet Toolbox Object) -- Parent class: none

Fields

wtboInfo Object information (Not used)

ud Userdata field

Methods

wtbo Constructor for the class WTBO.

get Get WTBO object field contents.

set Set WTBO object field contents.

Comments
Since any object in the toolbox is parented by a WTBO object, you can
associate your own data to an object using the 'ud' field, and then access it.

If Obj is an object (parented by a WTBO object), use

Obj = set(Obj,'ud',MyData)

to define the data.

B-16

Detailed Description of Objects in the Wavelet Toolbox™ Software

To retrieve the data, use

MyData = get(O,'ud')

NTREE Object
Class NTREE (New Tree) -- Parent class: WTBO

Fields

wtbo Parent object

order Tree order

depth Tree depth

spsch Split scheme for nodes

tn Column vector with terminal nodes indices

Methods

ntree Constructor for the class NTREE.

findactn Find active nodes.

get Get NTREE object field contents.

nodejoin Recompose node(s).

nodesplt Split (decompose) node(s).

plot Plot NTREE object.

set Set NTREE object field contents.

tlabels Labels for the nodes of a tree.

wtreemgr Manager for NTREE object.

Private

locnumcn Local number for a child node

tabofasc Table of ascendants of nodes

B-17

B Object-Oriented Programming

DTREE Object
Class DTREE (Data Tree) -- Parent class: NTREE

Fields

ntree Parent object

allNI All Nodes Information

terNI Terminal Nodes Information

Fields Description
allNI is a NBnodes-by-3 array such that

allNI(N,:) = [ind,size(1,1),size(1,2)]

• ind = index of the node N

• size = size of data associated with the node N

terNI is a 1-by-2 cell array such that

• terNI{1} is an NB_TerminalNodes-by-2 array such that

- terNI{1}(N,:) is the size of coefficients associated with the N-th
terminal node. The nodes are numbered from left to right and from top
to bottom. The root index is 0.

• terNI{2} is a row vector containing the previous coefficients stored
row-wise in the above specified order.

Methods

dtree Constructor for the class DTREE.

expand Expand data tree.

fmdtree Field manager for DTREE object.

nodejoin Recompose node.

B-18

Detailed Description of Objects in the Wavelet Toolbox™ Software

nodesplt Split (decompose) node.

rnodcoef Reconstruct node coefficients.

defaninf Define node information (all nodes).

get Get DTREE object field contents.

plot Plot DTREE object.

read Read values in DTREE object fields.

set Set DTREE object field contents.

write Write values in DTREE object fields.

merge Merge (recompose) the data of a node.

recons Reconstruct node coefficients.

split Split (decompose) the data of a terminal node.

Comments

• After the constructor, the first set of methods (between line separators)
might not be overloaded (or only with great care). The second set of
methods can be overloaded. The third set of methods must be overloaded to
recompose, reconstruct, or decompose nodes data.

• The method nodejoin calls the method merge, the method nodesplt calls
the method split, and the method rnodcoef calls the method recons.

• To define nodes information, you must overload the method defaninf. For
each node N, the basic information is given by

allNI(N,1:3): [index,size(1,1),size(1,2)];

You can add other information by adding columns to allNI.

See the WPTREE object method for an example.

• If the method get is not overloaded, using the DTREE get method you can
get some object field contents (but not all).

B-19

B Object-Oriented Programming

For example, if T is parented by a DTREE object of order 2 and if 'Tfield'
is a field of T, whose content is Tval, [a,b] = get(t,'order','Tfield')
returns a = 2 and b = 'errorWTBX'. Nevertheless, using a
nondocumented method you can get the right values. Namely:
[a,b] = getwtbo(t,'order','Tfield') returns a = 2 and b=Tval.

WPTREE Object
Class WPTREE (Wavelet Packet Tree) -- Parent class: DTREE

Fields

dtree Parent object

wavInfo Structure (wavelet information)

entInfo Structure (entropy information)

Fields Description
wavInfo

wavName Wavelet Name

Lo_D Low Decomposition filter

Hi_D High Decomposition filter

Lo_R Low Reconstruction filter

Hi_R High Reconstruction filter

entInfo

entName Entropy Name

entPar Entropy Parameter

allNI Array(nbnode,5) (field of the dtree parent object)

[ind,size,ent,ento]

B-20

Detailed Description of Objects in the Wavelet Toolbox™ Software

ind Index

size Size of data

ent Entropy

ento Optimal Entropy

Methods

Constructor.

Method Description

wptree Constructor for the classWPTREE

Methods That Overload Those of DTREE Class.

Method Description

defaninf Define node information (all nodes).

get Get WPTREE object field contents.

merge Merge (recompose) the data of a node.

read Read values in WPTREE object fields.

recons Reconstruct wavelet packet coefficients.

set Set WPTREE object field contents.

split Split (decompose) the data of a terminal node.

tlabels Labels for the nodes of a wavelet packet tree.

write Write values in WPTREE object fields.

Proper Methods of WPTREE Class.

Method Description

bestlevt Best level of a wavelet packet tree.

besttree Best wavelet packet tree.

B-21

B Object-Oriented Programming

Method Description

entrupd Entropy update (wavelet packet tree).

wp2wtree Extract wavelet tree from wavelet packet tree.

wpcoef Wavelet packet coefficients.

wpcutree Cut wavelet packet tree.

wpjoin Recompose wavelet packet.

wpplotcf Plot wavelet packets colored coefficients.

wprcoef Reconstruct wavelet packet coefficients.

wprec Wavelet packet reconstruction 1-D.

wprec2 Wavelet packet reconstruction 2-D.

wpsplt Split (decompose) wavelet packet.

wpthcoef Wavelet packet coefficients thresholding.

wpviewcf Plot wavelet packets colored coefficients.

B-22

Advanced Use of Objects

Advanced Use of Objects
The following sections explain how to extend the toolbox with new objects
through four examples.

• “Example 1: Building a Wavelet Tree Object (WTREE)” on page B-23

• “Example 2: Building a Right Wavelet Tree Object (RWVTREE)” on page
B-24

• “Example 3: Building a Wavelet Tree Object (WVTREE)” on page B-26

• “Example 4: Building a Wavelet Tree Object (EDWTTREE)” on page B-27

Example 1: Building a Wavelet Tree Object (WTREE)
This example creates a new class of objects: WTREE.

Starting from the class DTREE and overloading the methods split and
merge, we define a wavelet tree class.

To plot a WTREE, the DTREE plot method is used.

You can have a look at a one-dimensional example in the ex1_wt file
and at a two-dimensional example in the ex2_wt file located in the
toolbox/wavelet/wavedemo folder. These examples can be used directly, but
they are also useful to learn how to build new object-oriented programming
functions.

The definition of the new class is described below.

Class WTREE (parent class: DTREE)

Fields

dtree Parent object

dwtMode DWT extension mode

wavInfo Structure (wavelet information)

B-23

B Object-Oriented Programming

wavInfo Structure information

wavName Wavelet Name

Lo_D Low Decomposition filter

Hi_D High Decomposition filter

Lo_R Low Reconstruction filter

Hi_R High Reconstruction filter

Methods

wtree Constructor for the class WTREE.

merge Merge (recompose) the data of a node.

split Split (decompose) the data of a terminal node.

Example 2: Building a Right Wavelet Tree Object
(RWVTREE)
This example creates a new class of objects: RWVTREE.

We define a right wavelet tree class starting from the class WTREE and
overloading the methods split, merge, and plot (inherited from DTREE).

The plot method shows how to add Node Labels.

You can have a look at a one-dimensional example in the ex1_rwvt file
and at a two-dimensional example in the ex2_rwvt file located in the
toolbox/wavelet/wavedemo folder. These programs can be used directly, but
they are also useful to learn how to build new object-oriented programming
functions.

The definition of the new class is described below.

Class RWVTREE (parent class: WTREE)

B-24

Advanced Use of Objects

Fields

dummy Not used

wtree Parent object

Methods

rwvtree Constructor for the class RWVTREE.

merge Merge (recompose) the data of a node.

plot Plot RWVTREE object.

split Split (decompose) the data of a terminal node.

Running This Example
The following figure is obtained using the example ex1_rwvt and clicking
the node 14.

The approximations are labeled in yellow and the details are labeled in red.
The last nodes cannot be split.

B-25

B Object-Oriented Programming

Example 3: Building a Wavelet Tree Object (WVTREE)
This example creates a new class of objects: WVTREE.

We define a wavelet tree class starting from the class WTREE and overloading
the methods get, plot, and recons (all inherited from DTREE).

The split and merge methods of the class WTREE are used.

The plot method shows how to add Node Labels and Node Actions.

You can have a look at a one-dimensional example in the ex1_wvt file
and at a two-dimensional example in the ex2_wvt file located in the
toolbox/wavelet/wavedemo folder. These programs can be used directly, but
they are also useful to learn how to build new object-oriented programming
functions.

The definition of the new class is described below.

Class WVTREE (parent class: WTREE)

Fields

dummy Not used

wtree Parent object

Methods

wvtree Constructor for the class WVTREE.

get Get WVTREE object field contents.

plot Plot WVTREE object.

recons Reconstruct node coefficients.

Running This Example
The following figure is obtained using the example ex2_wvt and clicking the
node 2.

B-26

Advanced Use of Objects

The approximations are labeled in yellow and the details are labeled in red.
The last nodes cannot be split. The title of the figure contains the DWT
extension mode used ('sym' in the present example).

Example 4: Building a Wavelet Tree Object
(EDWTTREE)
This example creates a new class of objects: EDWTTREE.

We define an ε-DWT tree class starting from the class DTREE and overloading
the methods merge, plot, recons, and split.

For more information on the ε-DWT, see the section “ ε -Decimated DWT”
on page 6-45.

The plot method shows how to add Node Labels, Node Actions, and Tree
Actions.

You can have a look at the example in the ex1_edwt file located in the
toolbox/wavelet/wavedemo folder. This program can be used directly, but
it is also useful to learn how to build new object-oriented programming
functions.

B-27

B Object-Oriented Programming

The definition of the new class is described below.

Class EDWTTREE (parent class: DTREE)

Fields

dtree Parent object

dwtMode DWT extension mode

wavInfo Structure (wavelet information)

Fields Description
wavInfo

wavName Wavelet Name

Lo_D Low Decomposition filter

Hi_D High Decomposition filter

Lo_R Low Reconstruction filter

Hi_R High Reconstruction filter

Methods

edwttree Constructor for the class EDWTTREE.

merge Merge (recompose) the data of a node.

plot Plot EDWTTREE object.

recons Reconstruct node coefficients.

split Split (decompose) the data of a terminal node.

Running This Example
The following figure is obtained using the example ex1_edwt, selecting the
De-noise option in the Tree Action menu and clicking the node 0.

B-28

Advanced Use of Objects

The approximations are labeled in yellow and the details are labeled in red.
The last nodes cannot be split.

The title of the figure contains the DWT extension mode used ('sym' in the
present example) and the name of the de-noising method.

B-29

B Object-Oriented Programming

B-30

Index

IndexA
adding a new wavelet 7-2
algorithms

decomposition 6-23
discrete wavelet transform (DWT) 6-19
fast wavelet transform (FWT) 6-19
filters 6-19
for biorthogonal 6-28
lifting wavelet transform (LWT) 6-55
Mallat 6-19
polyphase 6-57
rationale 6-28
reconstruction 6-30
stationary wavelet transform (SWT) 6-45

analysis 6-173
biorthogonal 6-78
case study 2-39
continuous

coefficients 6-12
continuous or discrete 6-62
discrete

coefficients 6-12
illustrated examples 2-2
local and global 6-14
multiscale 2-39
one-dimensional wavelet packet 3-7
orthogonal

algorithm 6-28
and wavelet families 6-73
basis 6-62
dbN wavelets 6-76
filters 6-19

redundant 6-13
time-scale

using redundant representation
instead 6-13

translation invariant 6-45
two-dimensional wavelet packet 3-21
wavelet packet 3-2
See also transforms

approximations
coefficients

discrete wavelet transform 6-23
definition 6-17
notation 6-3
wavelet decomposition 6-6

axes
view A-13

B
bases. See analysis,wavelet packets
besttree function 6-167
binning

density estimation 6-120
regression estimation 6-125

biorthogonal
quadruplets 6-53

biorthogonal wavelets 6-78
definition 6-78
See also analysis

border distortion
boundary value replication 6-35
periodic extension 6-35
periodic padding 6-36
periodized wavelet transform 6-45
smooth padding 6-36
symmetric extension 6-35
symmetrization 6-35
zero-padding 6-35

breakdowns
peak 2-37
proximal slopes 2-23
rupture 2-21
second derivative 2-25
variance 6-112

C
centfrq function 6-69

Index-1

Index

chirp signal
example analysis 6-146

coefficients
approximation

fast wavelet transform 6-23
coloration A-21
detail

fast wavelet transform 6-23
coiflets

definition 6-77
Coloration Mode

color coding A-2
controlling A-7
controlling the colormap A-6

colored AR(3) noise example 2-17
complex frequency B-spline wavelets 6-88
complex Gaussian wavelets 6-87
complex Morlet wavelets 6-87
complex Shannon wavelets 6-89
compressing images

fingerprint example 1-27
true compression 6-136

compression
ddencmp function 3-4
difference with de-noising 6-116
energy ratio 6-118
methods 6-132
norm recovery 6-118
number of zeros 6-119
predefined strategies 6-128
procedure

wavelet packets 3-5
wavelets 6-115

retained energy 6-118
thresholding strategies 6-132
true 6-136
using wavelet packets 3-25

D
Daubechies wavelets

definition 6-74
de-noising

basic model
one-dimensional 6-102
two-dimensional 6-111

default values 3-4
fixed form threshold 6-105
methods 6-132
minimax performance 6-105
noise size estimate 6-107
nonwhite noise 6-107
predefined strategies 6-128
procedure

wavelet packets 3-5
wavelets 6-103

SURE estimate 6-105
using SWT

2-D analysis example 1-24
variance adaptive 6-112
white noise 6-101

de-noising images
2-D wavelet analysis and 2-D stationary

wavelet analysis 1-21
two-dimensional procedure 6-111

de-noising signals
wavelet analysis 1-18

decimation. See downsampling
decomposition

best-level 6-164
choosing optimal 6-158
entropy-based criteria 6-158
hierarchical organization 6-10
optical comparison 6-6

density estimation
definition 6-119

details
decomposition 6-143
mathematical definition 6-17

Index-2

Index

notation 6-3
orientation 6-25
wavelet decomposition 6-6

dilation equation
twin-scale relation 6-19

discontinuities 2-23
detecting 1-3
See also breakdowns

discrete Meyer wavelet 6-86
downsampling

one-dimensional 6-24
two-dimensional 6-25

E
edge effects. See border distortion
elementary lifting steps (ELS) 6-53
ELS. See lifting
entropy

definitions 6-158
estimation 6-128

default values 6-128
See also function estimation

examples
colored AR(3) noise 2-17
frequency breakdown 2-10
polynomial + white noise 2-19
ramp + colored noise 2-29
ramp + white noise 2-27
real electricity consumption signal 2-37
second-derivative discontinuity 2-25
sine + white noise 2-31
step signal 2-21
triangle + a sine 2-33
triangle + a sine + noise 2-35
two proximal discontinuities 2-23
uniform white noise 2-15

exporting from the GUI
wavelet packets 3-29

extension mode. See border distortion

F
fast multiplication of large matrices 1-29
fast wavelet transform (FWT). See transforms
filters 6-173

FIR
biorthogonal case 6-79
MATLAB file used for construction 7-5

high-pass 6-23
low-pass 6-23
minimum phase 6-77
quadrature mirror

construction example 6-21
scaling 6-20
See also twin-scale relations

fixed design. See regression
Fourier analysis

basic function 6-14
windowed 2-14

fractal
properties of signals and images 1-11
redundant methods 6-13

frequencies
identifying pure 1-12
parameter 6-155
related to scale 6-68

frequency B-spline wavelets 6-88
frequency breakdown example 2-10
function estimation 6-119
fusion of images. See image fusion
FWT. See transforms

G
Gaussian wavelets 6-85
GUI

full window resolution A-20
using menus A-9
using the mouse A-3
wavelet display A-26
wavelet packet 3-7

Index-3

Index

wavelet packet display A-27

H
Haar wavelet

definition 6-75
Heisenberg uncertainty principle 6-14

I
IDWT. See inverse discrete wavelet transform,

transforms
ILWT. See inverse lifting wavelet transform
importing to the GUI

wavelet packets 3-29
inverse lifting wavelet transform (ILWT) 6-57
inverse stationary wavelet transform

(ISWT) 6-50
ISWT. See inverse stationary wavelet, transforms

L
Laurent polynomial 6-54
lazy wavelet 6-55
lifting 6-52

dual 6-54
elementary step (ELS) 6-53
primal 6-53
scheme (LS) 6-55

lifting wavelet transform (LWT) 6-57
Load Signal dialog box

wavelet packets 3-8
local analysis. See analysis
long-term evolution

detecting 1-8
LS. See lifting scheme
LWT. See lifting wavelet transform

M
MATLAB files

for wavelet families 7-4
merge. See wavelet packets
Mexican hat wavelet

definition 6-83
Meyer wavelet

definition 6-80
minimax 6-105
missing data 2-49
Morlet wavelet

definition 6-83
multiresolution 6-28

N
node

action A-22
noise

ARMA 2-18
colored 2-29
Gaussian 6-100
processing 6-100
suppressing 1-15
unscaled 6-107
white 6-101

nondecimated DWT. See transforms (stationary
wavelet)

O
objects B-3
orthogonal wavelets 6-5
outliers

suppressing 2-48

P
padding. See border distortion
perfect reconstruction 6-53
periodic-padding

signal extension 6-36

Index-4

Index

periodized wavelet transform. See border
distortion

polynomial + white noise example 2-19
polyphase matrix 6-54
predefined wavelet families

type 1 7-5
type 2 7-5
type 3 7-6
type 4 7-6
type 5 7-6

Q
quadrature mirror filters (QMF)

orthfilt function 6-21

R
ramp + colored noise example 2-29
ramp + white noise example 2-27
random design. See regression estimation
real electricity consumption signal example 2-37
reconstruction

MATLAB files 6-32
one step 6-27
one-dimensional IDWT 6-24
two-dimensional IDWT 6-25

redundancy 6-62
regression estimation

goal 6-124
regularity

definition 6-63
wavelet families 6-92

resemblance index 1-10
reverse biorthogonal wavelets 6-84

S
scale

dyadic
definition 6-4

to frequency
relationship 6-68
scal2frq function 1-14

scale mode A-17
scaling filters

definition 6-20
notation 6-4

scaling functions
notation 6-4
shapes 6-6

second-derivative discontinuity example 2-25
self-similarity

detecting 1-10
Shannon wavelets 6-89
signal extensions

border distortion 6-35
signal-end effects. See border distortion
sine + white noise example 2-31
smooth padding

signal extension 6-36
splines

biorthogonal family 6-82
filter lengths 6-28

split. See wavelet packets
stationary wavelet transform (SWT) 6-45
step signal example 2-21
support. See wavelet families
SWT. See stationary wavelet transform (SWT)
symlets

definition 6-76
symmetrization

signal extension 6-36
symmetry. See wavelet families
synthesis

inverse transform 6-15

T
thresholding 6-173

hard 6-103

Index-5

Index

interval dependent 6-113
rules

tptr options 6-105
soft 6-103
strategies 6-132
See also de-noising, compression

thselect MATLAB file 6-105
transforms

continuous versus discrete 6-13
fast wavelet (FWT) 6-19
integer to integer 6-59
inverse (IDWT)

synthesis 6-15
inverse lifting wavelet transform

(ILWT) 6-57
inverse stationary wavelet (ISWT) 6-50
lifting wavelet (LWT) 6-57
stationary wavelet (SWT) 6-45
translation invariant 6-45

translation 6-9
using the mouse A-4

translation invariance 6-45
trees

best 3-11
best-level 6-164
objects B-3
wavelet

two-dimensional 6-27
wavelet packet

notation 6-157
subtrees 6-163

trend 1-8
See also long-term evolution

triangle + a sine + noise example 2-35
triangle + a sine example 2-33
true compression for images 6-136
twin-scale relations

definition 6-19
two proximal discontinuities example 2-23

U
uniform white noise example 2-15
upsampling

two-dimensional IDWT 6-27

V
vanishing moments

suppression of signals 6-63
wavelet families 6-92

variance adaptive thresholding 6-112
view axes A-13

W
Wavelet 1-D De-Noising window 1-18
Wavelet 2-D Compression window 1-27
Wavelet 2-D tool

fingerprint example 1-27
wavelet analysis

advantage over Fourier 1-3
as Fourier-type function 1-12
de-noising signals 1-18
revealing signal trends 1-9

wavelet families
adding new 7-2
criteria 6-73
full name 7-2
notation 6-4
properties (Part 1) 6-92
properties (Part 2) 6-95
regularity

advantage 6-73
definition 6-63

short name 7-3
support 6-73
symmetry 6-73
vanishing moments 6-73

wavelet filters
notation 6-4

Index-6

Index

wavelet notation
associated family 6-4

Wavelet Packet 1-D Compression window 3-12
Wavelet Packet 1-D menu item 3-7
Wavelet Packet 1-D tool

starting 3-7
Wavelet Packet 2-D Compression window 3-25
wavelet packets

and wavelet analysis
differences 6-144

atoms 6-154
bases 6-157
best level decomposition 6-164
best tree 3-11
besttree function 3-4
building 6-151
compression 6-167
computing the best tree 3-18
de-noising

ideas 6-167
using SURE 3-15

decomposition 6-167
decomposition tree

subtrees 6-163
definition 6-143
finding best level 3-4
frequency order 6-155
from wavelets to 6-143
merge 6-158
natural order 6-155
objects B-3
organization 6-156
selecting threshold for compression 3-12
split 6-158
tree

notation 6-157
wavelets

adding new 7-2
associated family 6-7
Battle-Lemarie 6-82

biorthogonal
definition 6-78

candidates 6-65
coiflets

definition 6-77
complex frequency B-spline 6-88
complex Gaussian 6-87
complex Morlet 6-87
complex Shannon 6-89
Daubechies

definition 6-74
defining order 7-4
determining type 7-3
discrete Meyer 6-86
Gaussian 6-85
Haar

definition 6-75
"lazy" 6-55
lifted 6-55
Mexican hat

definition 6-83
Meyer

definition 6-80
Morlet

definition 6-83
notation 6-4
one-dimensional analysis 6-6
one-dimensional capabilities

objects 6-32
organization 6-12
reverse biorthogonal 6-84
shapes 6-6
symlets

definition 6-76
translation 6-9
tree

two-dimensional 6-27
two-dimensional 6-8
two-dimensional analysis 6-6
two-dimensional capabilities

Index-7

Index

objects 6-33
vanishing moments

number of 6-73
suppression of signals 6-63

wavelets.asc file 7-16
wavelets.inf file 7-16
wavelets.prv file 7-16

wavemngr command 7-2

Z
zero-padding

signal extension 6-35

Index-8

	toc
	Acknowledgments
	Wavelet Applications
	Introduction to Wavelet Analysis
	Detecting Discontinuities and Breakdown Points I
	Discussion
	Guidelines for Detecting Discontinuities

	Detecting Discontinuities and Breakdown Points II
	Discussion

	Detecting Long-Term Evolution
	Discussion

	Detecting Self-Similarity
	Wavelet Coefficients and Self-Similarity
	Discussion

	Identifying Pure Frequencies
	Discussion

	Suppressing Signals
	Discussion
	Vanishing Moments

	De-Noising Signals
	Discussion

	De-Noising Images
	Discussion

	Compressing Images
	Discussion

	Fast Multiplication of Large Matrices
	Example 1: Effective Fast Matrix Multiplication
	Example 2: Ineffective Fast Matrix Multiplication

	Wavelets in Action: Examples and Case Studies
	Illustrated Examples
	Advice to the Reader
	Example 1: A Sum of Sines
	Example 2: A Frequency Breakdown (Discontinuity)
	Example 3: Uniform White Noise
	Example 4: Colored AR(3) Noise
	Example 5: Polynomial + White Noise
	Example 6: A Step Signal
	Example 7: Two Proximal Discontinuities
	Example 8: A Second-Derivative Discontinuity
	Example 9: A Ramp + White Noise
	Example 10: A Ramp + Colored Noise
	Example 11: A Sine + White Noise
	Example 12: A Triangle + A Sine
	Example 13: A Triangle + A Sine + Noise
	Example 14: A Real Electricity Consumption Signal

	Case Study: An Electrical Signal
	Data and the External Information
	Analysis of the Midday Period
	Analysis of the End of the Night Period
	Suggestions for Further Analysis
	Identify the Sensor Failure
	Suppress the Noise
	Identify Patterns in the Details
	Locate and Suppress Outlying Values
	Study Missing Data

	Using Wavelet Packets
	About Wavelet Packet Analysis
	One-Dimensional Wavelet Packet Analysis
	Starting the Wavelet Packet 1-D Tool.
	Compressing a Signal Using Wavelet Packets
	Selecting a Threshold for Compression.

	De-Noising a Signal Using Wavelet Packets
	Starting the Wavelet Packet 1-D Tool.

	Two-Dimensional Wavelet Packet Analysis
	Starting the Wavelet Packet 2-D Tool.
	Compressing an Image Using Wavelet Packets

	Importing and Exporting from Graphical Tools
	Saving Information to Disk
	Saving Synthesized Signals
	Saving Synthesized Images
	Saving One-Dimensional Decomposition Structures
	Saving Two-Dimensional Decomposition Structures

	Loading Information into the Graphical Tools
	Loading Signals
	Loading Images
	Loading Wavelet Packet Decomposition Structures

	1-D Continuous Wavelet Analysis Using Discrete Fourier Transform
	DFT-Based Continuous Wavelet Analysis Using Command Line
	CWT of Sum of Disjoint Sinusoids
	Approximate Scale-Frequency Conversions
	Signal Reconstruction from CWT Coefficients
	Signal Approximation with Modified CWT Coefficients

	DFT-Based Continuous Wavelet Analysis Using Graphical User Inter
	Manual Selection of CWT Coefficients

	Generating MATLAB Code from Wavelet Toolbox GUI
	Generating MATLAB Code for 1-D Decimated Wavelet Denoising and C
	Wavelet 1-D Denoising
	Denoise Doppler Signal
	Interval Dependent 1-D Wavelet Denoising

	Generating MATLAB Code for 2-D Decimated Wavelet Denoising and C
	2-D Decimated Discrete Wavelet Transform Denoising
	2-D Decimated Discrete Wavelet Transform Compression

	Generating MATLAB Code for 1-D Stationary Wavelet Denoising
	1-D Stationary Wavelet Transform Denoising

	Generating MATLAB Code for 2-D Stationary Wavelet Denoising
	2-D Stationary Wavelet Transform Denoising

	Generating MATLAB Code for 1-D Wavelet Packet Denoising and Comp
	1-D Wavelet Packet Denoising

	Generating MATLAB Code for 2-D Wavelet Packet Denoising and Comp
	2-D Wavelet Packet Compression

	Advanced Concepts
	Mathematical Conventions
	General Concepts
	Wavelets: A New Tool for Signal Analysis
	Wavelet Decomposition: A Hierarchical Organization
	Finer and Coarser Resolutions
	Wavelet Shapes
	Wavelets and Associated Families
	Wavelet Transforms: Continuous and Discrete
	Local and Global Analysis
	Synthesis: An Inverse Transform
	Details and Approximations

	Fast Wavelet Transform (FWT) Algorithm
	Filters Used to Calculate the DWT and IDWT
	Algorithms
	Why Does Such an Algorithm Exist?
	One-Dimensional Wavelet Capabilities
	Basic One-Dimensional Objects.

	Two-Dimensional Wavelet Capabilities
	Basic Two-Dimensional Objects.

	Dealing with Border Distortion
	Signal Extensions: Zero-Padding, Symmetrization, and Smooth Padd

	Discrete Stationary Wavelet Transform (SWT)
	-Decimated DWT
	How to Calculate the -Decimated DWT: SWT
	Step 0 (Original Data).

	Inverse Discrete Stationary Wavelet Transform (ISWT)
	More About SWT

	Lifting Method for Constructing Wavelets
	Lifting Background
	Lifting Functions
	Lifting Schemes
	Biorthogonal Quadruplets of Filters and Lifting Schemes
	Usual Biorthogonal Quadruplets
	Lifting Wavelet Transform (LWT)
	Laurent Polynomials and Matrices
	Examples of Lifting Methods

	Frequently Asked Questions
	Continuous or Discrete Analysis?
	Why Are Wavelets Useful for Space-Saving Coding?
	What Is the Advantage Having Zero Average and Sometimes Several
	What About the Regularity of a Wavelet ?
	Are Wavelets Useful in Fields Other Than Signal or Image Process
	What Functions Are Candidates to Be a Wavelet?
	Is It Easy to Build a New Wavelet?
	What Is the Link Between Wavelet and Fourier Analysis?
	How to Connect Scale to Frequency?

	Wavelet Families: Additional Discussion
	Daubechies Wavelets: dbN
	Haar
	dbN

	Symlet Wavelets: symN
	Coiflet Wavelets: coifN
	Biorthogonal Wavelet Pairs: biorNr.Nd
	Meyer Wavelet: meyr
	Battle-Lemarie Wavelets
	Mexican Hat Wavelet: mexh
	Morlet Wavelet: morl
	Additional Real Wavelets
	Reverse Biorthogonal Wavelet Pairs: rbioNr.Nd
	Gaussian Derivatives Family: gaus
	FIR Based Approximation of the Meyer Wavelet: dmey

	Complex Wavelets
	Complex Gaussian Wavelets: cgau
	Complex Morlet Wavelets: cmor
	Complex Frequency B-Spline Wavelets: fbsp
	Complex Shannon Wavelets: shan

	Summary of Wavelet Families and Associated Properties (Part 1)
	Summary of Wavelet Families and Associated Properties (Part 2)

	Wavelet Applications: More Detail
	Suppressing Signals
	Splitting Signal Components
	Noise Processing
	De-Noising
	Basic One-Dimensional Model
	De-Noising Procedure Principles
	Soft or Hard Thresholding?
	Threshold Selection Rules
	Dealing with Unscaled Noise and Nonwhite Noise
	De-Noising in Action
	Extension to Image De-Noising
	One-Dimensional Variance Adaptive Thresholding of Wavelet Coeffi
	More About De-Noising

	Data Compression
	Compression Scores

	Function Estimation: Density and Regression
	Density Estimation
	Regression Estimation

	Available Methods for De-Noising, Estimation, and Compression Us
	One-Dimensional DWT and SWT De-Noising
	One-Dimensional DWT Compression
	Two-Dimensional DWT and SWT De-Noising
	Two-Dimensional DWT Compression
	One-Dimensional Wavelet Packet De-Noising
	One-Dimensional Wavelet Packet Compression
	Two-Dimensional Wavelet Packet De-Noising
	Two-Dimensional Wavelet Packet Compression
	One-Dimensional Regression Estimation
	Density Estimation
	More About the Thresholding Strategies

	True Compression for Images
	Effects of Quantization
	True Compression Methods
	Quantitative and Perceptual Quality Measures
	More Information on the True Compression

	Wavelet Packets
	From Wavelets to Wavelet Packets: Decomposing the Details
	Wavelet Packets in Action: An Introduction
	Example 1: Analyzing a Sine Function
	Example 2: Analyzing a Chirp Signal
	Wavelet Packet Spectrum

	Building Wavelet Packets
	Wavelet Packet Atoms
	Organizing the Wavelet Packets
	Choosing the Optimal Decomposition
	Example 1: Compute Various Entropies.

	Some Interesting Subtrees
	Reconstructing a Signal Approximation from a Node

	Wavelet Packets 2-D Decomposition Structure
	Wavelet Packets for Compression and De-Noising

	References

	Adding Your Own Wavelets
	Preparing to Add a New Wavelet Family
	Choose the Wavelet Family Full Name
	Choose the Wavelet Family Short Name
	Determine the Wavelet Type
	Define the Orders of Wavelets Within the Given Family
	Build a MAT-File or Code File
	Type 1 (Orthogonal with FIR Filter)
	Type 2 (Biorthogonal with FIR Filter)
	Type 3 (Orthogonal with Scale Function)
	Type 4 or Type 5 (No FIR Filter; No Scale Function)

	Define the Effective Support

	Adding a New Wavelet Family
	Example 1
	Example 2

	After Adding a New Wavelet Family

	GUI Reference
	General Features
	Color Coding
	Connection of Plots
	Using the Mouse
	Making Selections and Activating Controls
	Translating Plots
	Displaying Position-Dependent Information

	Controlling the Colormap
	Controlling the Number of Colors
	Controlling the Coloration Mode

	Using Menus
	General Menu Bar
	File Menu Options
	Help Menu Options

	Using the View Axes Button
	Using the Interval-Dependent Threshold Settings Tool

	Continuous Wavelet Tool Features
	Wavelet 1-D Tool Features
	Tree Mode
	More Display Options

	Wavelet 2-D Tool Features
	Wavelet Packet Tool Features (1-D and 2-D)
	Coefficients Coloration
	Node Action
	Node Label

	Node Action Functionality

	Wavelet Display Tool
	Wavelet Packet Display Tool

	Object-Oriented Programming
	Introduction to Object-Oriented Features
	Short Description of Objects in the Wavelet Toolbox Software
	Simple Use of Objects Through Four Examples
	Example 1: plot and wpviewcf
	Example 2: drawtree and readtree
	Example 3: A Funny One
	Example 4: Thresholding Wavelet Packets

	Detailed Description of Objects in the Wavelet Toolbox Software
	WTBO Object
	Fields
	Methods
	Comments

	NTREE Object
	Fields
	Methods

	Private
	DTREE Object
	Fields
	Fields Description
	Methods
	Comments

	WPTREE Object
	Fields
	Fields Description
	Methods

	Advanced Use of Objects
	Example 1: Building a Wavelet Tree Object (WTREE)
	Fields
	wavInfo Structure information
	Methods

	Example 2: Building a Right Wavelet Tree Object (RWVTREE)
	Fields
	Methods
	Running This Example

	Example 3: Building a Wavelet Tree Object (WVTREE)
	Fields
	Methods
	Running This Example

	Example 4: Building a Wavelet Tree Object (EDWTTREE)
	Fields
	Fields Description
	Methods
	Running This Example

	Index

	tables
	Analysis-Decomposition Functions
	Synthesis-Reconstruction Functions
	Decomposition Structure Utilities
	De-Noising and Compression

